| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualsmul.f |
|- F = ( Scalar ` W ) |
| 2 |
|
ldualsmul.k |
|- K = ( Base ` F ) |
| 3 |
|
ldualsmul.t |
|- .x. = ( .r ` F ) |
| 4 |
|
ldualsmul.d |
|- D = ( LDual ` W ) |
| 5 |
|
ldualsmul.r |
|- R = ( Scalar ` D ) |
| 6 |
|
ldualsmul.m |
|- .xb = ( .r ` R ) |
| 7 |
|
ldualsmul.w |
|- ( ph -> W e. V ) |
| 8 |
|
ldualsmul.x |
|- ( ph -> X e. K ) |
| 9 |
|
ldualsmul.y |
|- ( ph -> Y e. K ) |
| 10 |
|
eqid |
|- ( oppR ` F ) = ( oppR ` F ) |
| 11 |
1 10 4 5 7
|
ldualsca |
|- ( ph -> R = ( oppR ` F ) ) |
| 12 |
11
|
fveq2d |
|- ( ph -> ( .r ` R ) = ( .r ` ( oppR ` F ) ) ) |
| 13 |
6 12
|
eqtrid |
|- ( ph -> .xb = ( .r ` ( oppR ` F ) ) ) |
| 14 |
13
|
oveqd |
|- ( ph -> ( X .xb Y ) = ( X ( .r ` ( oppR ` F ) ) Y ) ) |
| 15 |
|
eqid |
|- ( .r ` ( oppR ` F ) ) = ( .r ` ( oppR ` F ) ) |
| 16 |
2 3 10 15
|
opprmul |
|- ( X ( .r ` ( oppR ` F ) ) Y ) = ( Y .x. X ) |
| 17 |
14 16
|
eqtrdi |
|- ( ph -> ( X .xb Y ) = ( Y .x. X ) ) |