Metamath Proof Explorer


Theorem ldualsmul

Description: Scalar multiplication for the dual of a vector space. (Contributed by NM, 19-Oct-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses ldualsmul.f
|- F = ( Scalar ` W )
ldualsmul.k
|- K = ( Base ` F )
ldualsmul.t
|- .x. = ( .r ` F )
ldualsmul.d
|- D = ( LDual ` W )
ldualsmul.r
|- R = ( Scalar ` D )
ldualsmul.m
|- .xb = ( .r ` R )
ldualsmul.w
|- ( ph -> W e. V )
ldualsmul.x
|- ( ph -> X e. K )
ldualsmul.y
|- ( ph -> Y e. K )
Assertion ldualsmul
|- ( ph -> ( X .xb Y ) = ( Y .x. X ) )

Proof

Step Hyp Ref Expression
1 ldualsmul.f
 |-  F = ( Scalar ` W )
2 ldualsmul.k
 |-  K = ( Base ` F )
3 ldualsmul.t
 |-  .x. = ( .r ` F )
4 ldualsmul.d
 |-  D = ( LDual ` W )
5 ldualsmul.r
 |-  R = ( Scalar ` D )
6 ldualsmul.m
 |-  .xb = ( .r ` R )
7 ldualsmul.w
 |-  ( ph -> W e. V )
8 ldualsmul.x
 |-  ( ph -> X e. K )
9 ldualsmul.y
 |-  ( ph -> Y e. K )
10 eqid
 |-  ( oppR ` F ) = ( oppR ` F )
11 1 10 4 5 7 ldualsca
 |-  ( ph -> R = ( oppR ` F ) )
12 11 fveq2d
 |-  ( ph -> ( .r ` R ) = ( .r ` ( oppR ` F ) ) )
13 6 12 syl5eq
 |-  ( ph -> .xb = ( .r ` ( oppR ` F ) ) )
14 13 oveqd
 |-  ( ph -> ( X .xb Y ) = ( X ( .r ` ( oppR ` F ) ) Y ) )
15 eqid
 |-  ( .r ` ( oppR ` F ) ) = ( .r ` ( oppR ` F ) )
16 2 3 10 15 opprmul
 |-  ( X ( .r ` ( oppR ` F ) ) Y ) = ( Y .x. X )
17 14 16 eqtrdi
 |-  ( ph -> ( X .xb Y ) = ( Y .x. X ) )