Step |
Hyp |
Ref |
Expression |
1 |
|
ldualfvs.f |
|- F = ( LFnl ` W ) |
2 |
|
ldualfvs.v |
|- V = ( Base ` W ) |
3 |
|
ldualfvs.r |
|- R = ( Scalar ` W ) |
4 |
|
ldualfvs.k |
|- K = ( Base ` R ) |
5 |
|
ldualfvs.t |
|- .X. = ( .r ` R ) |
6 |
|
ldualfvs.d |
|- D = ( LDual ` W ) |
7 |
|
ldualfvs.s |
|- .xb = ( .s ` D ) |
8 |
|
ldualfvs.w |
|- ( ph -> W e. Y ) |
9 |
|
ldualfvs.m |
|- .x. = ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) |
10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
11 |
|
eqid |
|- ( oF ( +g ` R ) |` ( F X. F ) ) = ( oF ( +g ` R ) |` ( F X. F ) ) |
12 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
13 |
|
eqid |
|- ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) = ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) |
14 |
2 10 11 1 6 3 4 5 12 13 8
|
ldualset |
|- ( ph -> D = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( .s ` D ) = ( .s ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) ) ) |
16 |
4
|
fvexi |
|- K e. _V |
17 |
1
|
fvexi |
|- F e. _V |
18 |
16 17
|
mpoex |
|- ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) e. _V |
19 |
|
eqid |
|- ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) |
20 |
19
|
lmodvsca |
|- ( ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) e. _V -> ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) = ( .s ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) ) ) |
21 |
18 20
|
ax-mp |
|- ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) = ( .s ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) ) |
22 |
9 21
|
eqtri |
|- .x. = ( .s ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` R ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) >. } ) ) |
23 |
15 7 22
|
3eqtr4g |
|- ( ph -> .xb = .x. ) |