| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualfvs.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 2 |
|
ldualfvs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
ldualfvs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
ldualfvs.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 5 |
|
ldualfvs.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 6 |
|
ldualfvs.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 7 |
|
ldualfvs.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐷 ) |
| 8 |
|
ldualfvs.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑌 ) |
| 9 |
|
ldualfvs.m |
⊢ · = ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) |
| 12 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) |
| 14 |
2 10 11 1 6 3 4 5 12 13 8
|
ldualset |
⊢ ( 𝜑 → 𝐷 = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) ) |
| 16 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
| 17 |
1
|
fvexi |
⊢ 𝐹 ∈ V |
| 18 |
16 17
|
mpoex |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) ∈ V |
| 19 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) |
| 20 |
19
|
lmodvsca |
⊢ ( ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) ∈ V → ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) ) |
| 21 |
18 20
|
ax-mp |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) |
| 22 |
9 21
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) |
| 23 |
15 7 22
|
3eqtr4g |
⊢ ( 𝜑 → ∙ = · ) |