Step |
Hyp |
Ref |
Expression |
1 |
|
ldualfvs.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualfvs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
ldualfvs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
4 |
|
ldualfvs.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
ldualfvs.t |
⊢ × = ( .r ‘ 𝑅 ) |
6 |
|
ldualfvs.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
7 |
|
ldualfvs.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐷 ) |
8 |
|
ldualfvs.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑌 ) |
9 |
|
ldualfvs.m |
⊢ · = ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) |
12 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) |
14 |
2 10 11 1 6 3 4 5 12 13 8
|
ldualset |
⊢ ( 𝜑 → 𝐷 = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) ) |
16 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
17 |
1
|
fvexi |
⊢ 𝐹 ∈ V |
18 |
16 17
|
mpoex |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) ∈ V |
19 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) |
20 |
19
|
lmodvsca |
⊢ ( ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) ∈ V → ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) ) |
21 |
18 20
|
ax-mp |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) |
22 |
9 21
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ 𝑅 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 〉 } ) ) |
23 |
15 7 22
|
3eqtr4g |
⊢ ( 𝜑 → ∙ = · ) |