Metamath Proof Explorer


Theorem ldualfvs

Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualfvs.v 𝑉 = ( Base ‘ 𝑊 )
ldualfvs.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualfvs.k 𝐾 = ( Base ‘ 𝑅 )
ldualfvs.t × = ( .r𝑅 )
ldualfvs.d 𝐷 = ( LDual ‘ 𝑊 )
ldualfvs.s = ( ·𝑠𝐷 )
ldualfvs.w ( 𝜑𝑊𝑌 )
ldualfvs.m · = ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) )
Assertion ldualfvs ( 𝜑 = · )

Proof

Step Hyp Ref Expression
1 ldualfvs.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualfvs.v 𝑉 = ( Base ‘ 𝑊 )
3 ldualfvs.r 𝑅 = ( Scalar ‘ 𝑊 )
4 ldualfvs.k 𝐾 = ( Base ‘ 𝑅 )
5 ldualfvs.t × = ( .r𝑅 )
6 ldualfvs.d 𝐷 = ( LDual ‘ 𝑊 )
7 ldualfvs.s = ( ·𝑠𝐷 )
8 ldualfvs.w ( 𝜑𝑊𝑌 )
9 ldualfvs.m · = ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 eqid ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) = ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) )
12 eqid ( oppr𝑅 ) = ( oppr𝑅 )
13 eqid ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) = ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) )
14 2 10 11 1 6 3 4 5 12 13 8 ldualset ( 𝜑𝐷 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } ) )
15 14 fveq2d ( 𝜑 → ( ·𝑠𝐷 ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } ) ) )
16 4 fvexi 𝐾 ∈ V
17 1 fvexi 𝐹 ∈ V
18 16 17 mpoex ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ∈ V
19 eqid ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } )
20 19 lmodvsca ( ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ∈ V → ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } ) ) )
21 18 20 ax-mp ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } ) )
22 9 21 eqtri · = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘𝐾 , 𝑓𝐹 ↦ ( 𝑓f × ( 𝑉 × { 𝑘 } ) ) ) ⟩ } ) )
23 15 7 22 3eqtr4g ( 𝜑 = · )