Step |
Hyp |
Ref |
Expression |
1 |
|
ldualfvs.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualfvs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
ldualfvs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
4 |
|
ldualfvs.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
ldualfvs.t |
⊢ × = ( .r ‘ 𝑅 ) |
6 |
|
ldualfvs.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
7 |
|
ldualfvs.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐷 ) |
8 |
|
ldualfvs.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑌 ) |
9 |
|
ldualvs.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
10 |
|
ldualvs.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) = ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) |
12 |
1 2 3 4 5 6 7 8 11
|
ldualfvs |
⊢ ( 𝜑 → ∙ = ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) ) |
13 |
12
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝐺 ) = ( 𝑋 ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 𝐺 ) ) |
14 |
|
sneq |
⊢ ( 𝑘 = 𝑋 → { 𝑘 } = { 𝑋 } ) |
15 |
14
|
xpeq2d |
⊢ ( 𝑘 = 𝑋 → ( 𝑉 × { 𝑘 } ) = ( 𝑉 × { 𝑋 } ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑘 = 𝑋 → ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) = ( 𝑓 ∘f × ( 𝑉 × { 𝑋 } ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ∘f × ( 𝑉 × { 𝑋 } ) ) = ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ) |
18 |
|
ovex |
⊢ ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ∈ V |
19 |
16 17 11 18
|
ovmpo |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝐺 ∈ 𝐹 ) → ( 𝑋 ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 𝐺 ) = ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ) |
20 |
9 10 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( 𝑘 ∈ 𝐾 , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f × ( 𝑉 × { 𝑘 } ) ) ) 𝐺 ) = ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ) |
21 |
13 20
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝐺 ) = ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ) |