Metamath Proof Explorer


Theorem ldualvs

Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f
|- F = ( LFnl ` W )
ldualfvs.v
|- V = ( Base ` W )
ldualfvs.r
|- R = ( Scalar ` W )
ldualfvs.k
|- K = ( Base ` R )
ldualfvs.t
|- .X. = ( .r ` R )
ldualfvs.d
|- D = ( LDual ` W )
ldualfvs.s
|- .xb = ( .s ` D )
ldualfvs.w
|- ( ph -> W e. Y )
ldualvs.x
|- ( ph -> X e. K )
ldualvs.g
|- ( ph -> G e. F )
Assertion ldualvs
|- ( ph -> ( X .xb G ) = ( G oF .X. ( V X. { X } ) ) )

Proof

Step Hyp Ref Expression
1 ldualfvs.f
 |-  F = ( LFnl ` W )
2 ldualfvs.v
 |-  V = ( Base ` W )
3 ldualfvs.r
 |-  R = ( Scalar ` W )
4 ldualfvs.k
 |-  K = ( Base ` R )
5 ldualfvs.t
 |-  .X. = ( .r ` R )
6 ldualfvs.d
 |-  D = ( LDual ` W )
7 ldualfvs.s
 |-  .xb = ( .s ` D )
8 ldualfvs.w
 |-  ( ph -> W e. Y )
9 ldualvs.x
 |-  ( ph -> X e. K )
10 ldualvs.g
 |-  ( ph -> G e. F )
11 eqid
 |-  ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) = ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) )
12 1 2 3 4 5 6 7 8 11 ldualfvs
 |-  ( ph -> .xb = ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) )
13 12 oveqd
 |-  ( ph -> ( X .xb G ) = ( X ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) G ) )
14 sneq
 |-  ( k = X -> { k } = { X } )
15 14 xpeq2d
 |-  ( k = X -> ( V X. { k } ) = ( V X. { X } ) )
16 15 oveq2d
 |-  ( k = X -> ( f oF .X. ( V X. { k } ) ) = ( f oF .X. ( V X. { X } ) ) )
17 oveq1
 |-  ( f = G -> ( f oF .X. ( V X. { X } ) ) = ( G oF .X. ( V X. { X } ) ) )
18 ovex
 |-  ( G oF .X. ( V X. { X } ) ) e. _V
19 16 17 11 18 ovmpo
 |-  ( ( X e. K /\ G e. F ) -> ( X ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) G ) = ( G oF .X. ( V X. { X } ) ) )
20 9 10 19 syl2anc
 |-  ( ph -> ( X ( k e. K , f e. F |-> ( f oF .X. ( V X. { k } ) ) ) G ) = ( G oF .X. ( V X. { X } ) ) )
21 13 20 eqtrd
 |-  ( ph -> ( X .xb G ) = ( G oF .X. ( V X. { X } ) ) )