Step |
Hyp |
Ref |
Expression |
1 |
|
ldualfvs.f |
|- F = ( LFnl ` W ) |
2 |
|
ldualfvs.v |
|- V = ( Base ` W ) |
3 |
|
ldualfvs.r |
|- R = ( Scalar ` W ) |
4 |
|
ldualfvs.k |
|- K = ( Base ` R ) |
5 |
|
ldualfvs.t |
|- .X. = ( .r ` R ) |
6 |
|
ldualfvs.d |
|- D = ( LDual ` W ) |
7 |
|
ldualfvs.s |
|- .xb = ( .s ` D ) |
8 |
|
ldualfvs.w |
|- ( ph -> W e. Y ) |
9 |
|
ldualvs.x |
|- ( ph -> X e. K ) |
10 |
|
ldualvs.g |
|- ( ph -> G e. F ) |
11 |
|
ldualvs.a |
|- ( ph -> A e. V ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
ldualvs |
|- ( ph -> ( X .xb G ) = ( G oF .X. ( V X. { X } ) ) ) |
13 |
12
|
fveq1d |
|- ( ph -> ( ( X .xb G ) ` A ) = ( ( G oF .X. ( V X. { X } ) ) ` A ) ) |
14 |
2
|
fvexi |
|- V e. _V |
15 |
14
|
a1i |
|- ( ph -> V e. _V ) |
16 |
3 4 2 1
|
lflf |
|- ( ( W e. Y /\ G e. F ) -> G : V --> K ) |
17 |
8 10 16
|
syl2anc |
|- ( ph -> G : V --> K ) |
18 |
17
|
ffnd |
|- ( ph -> G Fn V ) |
19 |
|
eqidd |
|- ( ( ph /\ A e. V ) -> ( G ` A ) = ( G ` A ) ) |
20 |
15 9 18 19
|
ofc2 |
|- ( ( ph /\ A e. V ) -> ( ( G oF .X. ( V X. { X } ) ) ` A ) = ( ( G ` A ) .X. X ) ) |
21 |
11 20
|
mpdan |
|- ( ph -> ( ( G oF .X. ( V X. { X } ) ) ` A ) = ( ( G ` A ) .X. X ) ) |
22 |
13 21
|
eqtrd |
|- ( ph -> ( ( X .xb G ) ` A ) = ( ( G ` A ) .X. X ) ) |