Metamath Proof Explorer


Theorem ldualvsval

Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f F=LFnlW
ldualfvs.v V=BaseW
ldualfvs.r R=ScalarW
ldualfvs.k K=BaseR
ldualfvs.t ×˙=R
ldualfvs.d D=LDualW
ldualfvs.s ˙=D
ldualfvs.w φWY
ldualvs.x φXK
ldualvs.g φGF
ldualvs.a φAV
Assertion ldualvsval φX˙GA=GA×˙X

Proof

Step Hyp Ref Expression
1 ldualfvs.f F=LFnlW
2 ldualfvs.v V=BaseW
3 ldualfvs.r R=ScalarW
4 ldualfvs.k K=BaseR
5 ldualfvs.t ×˙=R
6 ldualfvs.d D=LDualW
7 ldualfvs.s ˙=D
8 ldualfvs.w φWY
9 ldualvs.x φXK
10 ldualvs.g φGF
11 ldualvs.a φAV
12 1 2 3 4 5 6 7 8 9 10 ldualvs φX˙G=G×˙fV×X
13 12 fveq1d φX˙GA=G×˙fV×XA
14 2 fvexi VV
15 14 a1i φVV
16 3 4 2 1 lflf WYGFG:VK
17 8 10 16 syl2anc φG:VK
18 17 ffnd φGFnV
19 eqidd φAVGA=GA
20 15 9 18 19 ofc2 φAVG×˙fV×XA=GA×˙X
21 11 20 mpdan φG×˙fV×XA=GA×˙X
22 13 21 eqtrd φX˙GA=GA×˙X