Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldualvscl
Next ⟩
ldualvaddcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldualvscl
Description:
The scalar product operation value is a functional.
(Contributed by
NM
, 18-Oct-2014)
Ref
Expression
Hypotheses
ldualvscl.f
⊢
F
=
LFnl
⁡
W
ldualvscl.r
⊢
R
=
Scalar
⁡
W
ldualvscl.k
⊢
K
=
Base
R
ldualvscl.d
⊢
D
=
LDual
⁡
W
ldualvscl.s
⊢
·
˙
=
⋅
D
ldualvscl.w
⊢
φ
→
W
∈
LMod
ldualvscl.x
⊢
φ
→
X
∈
K
ldualvscl.g
⊢
φ
→
G
∈
F
Assertion
ldualvscl
⊢
φ
→
X
·
˙
G
∈
F
Proof
Step
Hyp
Ref
Expression
1
ldualvscl.f
⊢
F
=
LFnl
⁡
W
2
ldualvscl.r
⊢
R
=
Scalar
⁡
W
3
ldualvscl.k
⊢
K
=
Base
R
4
ldualvscl.d
⊢
D
=
LDual
⁡
W
5
ldualvscl.s
⊢
·
˙
=
⋅
D
6
ldualvscl.w
⊢
φ
→
W
∈
LMod
7
ldualvscl.x
⊢
φ
→
X
∈
K
8
ldualvscl.g
⊢
φ
→
G
∈
F
9
eqid
⊢
Base
W
=
Base
W
10
eqid
⊢
⋅
R
=
⋅
R
11
1
9
2
3
10
4
5
6
7
8
ldualvs
⊢
φ
→
X
·
˙
G
=
G
⋅
R
f
Base
W
×
X
12
9
2
3
10
1
6
8
7
lflvscl
⊢
φ
→
G
⋅
R
f
Base
W
×
X
∈
F
13
11
12
eqeltrd
⊢
φ
→
X
·
˙
G
∈
F