Metamath Proof Explorer


Theorem ldualvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualvscl.f F = LFnl W
ldualvscl.r R = Scalar W
ldualvscl.k K = Base R
ldualvscl.d D = LDual W
ldualvscl.s · ˙ = D
ldualvscl.w φ W LMod
ldualvscl.x φ X K
ldualvscl.g φ G F
Assertion ldualvscl φ X · ˙ G F

Proof

Step Hyp Ref Expression
1 ldualvscl.f F = LFnl W
2 ldualvscl.r R = Scalar W
3 ldualvscl.k K = Base R
4 ldualvscl.d D = LDual W
5 ldualvscl.s · ˙ = D
6 ldualvscl.w φ W LMod
7 ldualvscl.x φ X K
8 ldualvscl.g φ G F
9 eqid Base W = Base W
10 eqid R = R
11 1 9 2 3 10 4 5 6 7 8 ldualvs φ X · ˙ G = G R f Base W × X
12 9 2 3 10 1 6 8 7 lflvscl φ G R f Base W × X F
13 11 12 eqeltrd φ X · ˙ G F