Metamath Proof Explorer


Theorem ldualvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualvscl.f F=LFnlW
ldualvscl.r R=ScalarW
ldualvscl.k K=BaseR
ldualvscl.d D=LDualW
ldualvscl.s ·˙=D
ldualvscl.w φWLMod
ldualvscl.x φXK
ldualvscl.g φGF
Assertion ldualvscl φX·˙GF

Proof

Step Hyp Ref Expression
1 ldualvscl.f F=LFnlW
2 ldualvscl.r R=ScalarW
3 ldualvscl.k K=BaseR
4 ldualvscl.d D=LDualW
5 ldualvscl.s ·˙=D
6 ldualvscl.w φWLMod
7 ldualvscl.x φXK
8 ldualvscl.g φGF
9 eqid BaseW=BaseW
10 eqid R=R
11 1 9 2 3 10 4 5 6 7 8 ldualvs φX·˙G=GRfBaseW×X
12 9 2 3 10 1 6 8 7 lflvscl φGRfBaseW×XF
13 11 12 eqeltrd φX·˙GF