Metamath Proof Explorer


Theorem ldualvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualvscl.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvscl.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualvscl.k 𝐾 = ( Base ‘ 𝑅 )
ldualvscl.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvscl.s · = ( ·𝑠𝐷 )
ldualvscl.w ( 𝜑𝑊 ∈ LMod )
ldualvscl.x ( 𝜑𝑋𝐾 )
ldualvscl.g ( 𝜑𝐺𝐹 )
Assertion ldualvscl ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 ldualvscl.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualvscl.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualvscl.k 𝐾 = ( Base ‘ 𝑅 )
4 ldualvscl.d 𝐷 = ( LDual ‘ 𝑊 )
5 ldualvscl.s · = ( ·𝑠𝐷 )
6 ldualvscl.w ( 𝜑𝑊 ∈ LMod )
7 ldualvscl.x ( 𝜑𝑋𝐾 )
8 ldualvscl.g ( 𝜑𝐺𝐹 )
9 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 1 9 2 3 10 4 5 6 7 8 ldualvs ( 𝜑 → ( 𝑋 · 𝐺 ) = ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) )
12 9 2 3 10 1 6 8 7 lflvscl ( 𝜑 → ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∈ 𝐹 )
13 11 12 eqeltrd ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 )