| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvaddcom.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 2 |
|
ldualvaddcom.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 3 |
|
ldualvaddcom.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 4 |
|
ldualvaddcom.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
ldualvaddcom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐹 ) |
| 6 |
|
ldualvaddcom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
7 8 1 4 5 6
|
lfladdcom |
⊢ ( 𝜑 → ( 𝑋 ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 ) = ( 𝑌 ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 ) ) |
| 10 |
1 7 8 2 3 4 5 6
|
ldualvadd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 ) ) |
| 11 |
1 7 8 2 3 4 6 5
|
ldualvadd |
⊢ ( 𝜑 → ( 𝑌 + 𝑋 ) = ( 𝑌 ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 ) ) |
| 12 |
9 10 11
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |