Metamath Proof Explorer


Theorem ldualvsass

Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014)

Ref Expression
Hypotheses ldualvsass.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvsass.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualvsass.k 𝐾 = ( Base ‘ 𝑅 )
ldualvsass.t × = ( .r𝑅 )
ldualvsass.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvsass.s · = ( ·𝑠𝐷 )
ldualvsass.w ( 𝜑𝑊 ∈ LMod )
ldualvsass.x ( 𝜑𝑋𝐾 )
ldualvsass.y ( 𝜑𝑌𝐾 )
ldualvsass.g ( 𝜑𝐺𝐹 )
Assertion ldualvsass ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 ldualvsass.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualvsass.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualvsass.k 𝐾 = ( Base ‘ 𝑅 )
4 ldualvsass.t × = ( .r𝑅 )
5 ldualvsass.d 𝐷 = ( LDual ‘ 𝑊 )
6 ldualvsass.s · = ( ·𝑠𝐷 )
7 ldualvsass.w ( 𝜑𝑊 ∈ LMod )
8 ldualvsass.x ( 𝜑𝑋𝐾 )
9 ldualvsass.y ( 𝜑𝑌𝐾 )
10 ldualvsass.g ( 𝜑𝐺𝐹 )
11 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
12 11 2 3 4 1 7 9 8 10 lflvsass ( 𝜑 → ( 𝐺f × ( ( Base ‘ 𝑊 ) × { ( 𝑌 × 𝑋 ) } ) ) = ( ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ∘f × ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) )
13 2 lmodring ( 𝑊 ∈ LMod → 𝑅 ∈ Ring )
14 7 13 syl ( 𝜑𝑅 ∈ Ring )
15 3 4 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑌𝐾𝑋𝐾 ) → ( 𝑌 × 𝑋 ) ∈ 𝐾 )
16 14 9 8 15 syl3anc ( 𝜑 → ( 𝑌 × 𝑋 ) ∈ 𝐾 )
17 1 11 2 3 4 5 6 7 16 10 ldualvs ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝐺f × ( ( Base ‘ 𝑊 ) × { ( 𝑌 × 𝑋 ) } ) ) )
18 11 2 3 4 1 7 10 9 lflvscl ( 𝜑 → ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ∈ 𝐹 )
19 1 11 2 3 4 5 6 7 8 18 ldualvs ( 𝜑 → ( 𝑋 · ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) = ( ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ∘f × ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) )
20 12 17 19 3eqtr4d ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) )
21 1 11 2 3 4 5 6 7 9 10 ldualvs ( 𝜑 → ( 𝑌 · 𝐺 ) = ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) )
22 21 oveq2d ( 𝜑 → ( 𝑋 · ( 𝑌 · 𝐺 ) ) = ( 𝑋 · ( 𝐺f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) )
23 20 22 eqtr4d ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) )