Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsass.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvsass.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldualvsass.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
ldualvsass.t |
⊢ × = ( .r ‘ 𝑅 ) |
5 |
|
ldualvsass.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
6 |
|
ldualvsass.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
7 |
|
ldualvsass.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
ldualvsass.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
9 |
|
ldualvsass.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
10 |
|
ldualvsass.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
12 |
11 2 3 4 1 7 9 8 10
|
lflvsass |
⊢ ( 𝜑 → ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { ( 𝑌 × 𝑋 ) } ) ) = ( ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ∘f × ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
13 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Ring ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
15 |
3 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐾 ) → ( 𝑌 × 𝑋 ) ∈ 𝐾 ) |
16 |
14 9 8 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 × 𝑋 ) ∈ 𝐾 ) |
17 |
1 11 2 3 4 5 6 7 16 10
|
ldualvs |
⊢ ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { ( 𝑌 × 𝑋 ) } ) ) ) |
18 |
11 2 3 4 1 7 10 9
|
lflvscl |
⊢ ( 𝜑 → ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ∈ 𝐹 ) |
19 |
1 11 2 3 4 5 6 7 8 18
|
ldualvs |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) = ( ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ∘f × ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
20 |
12 17 19
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) ) |
21 |
1 11 2 3 4 5 6 7 9 10
|
ldualvs |
⊢ ( 𝜑 → ( 𝑌 · 𝐺 ) = ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 · 𝐺 ) ) = ( 𝑋 · ( 𝐺 ∘f × ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) ) |
23 |
20 22
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑌 × 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) ) |