Metamath Proof Explorer


Theorem ldualvsass

Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014)

Ref Expression
Hypotheses ldualvsass.f
|- F = ( LFnl ` W )
ldualvsass.r
|- R = ( Scalar ` W )
ldualvsass.k
|- K = ( Base ` R )
ldualvsass.t
|- .X. = ( .r ` R )
ldualvsass.d
|- D = ( LDual ` W )
ldualvsass.s
|- .x. = ( .s ` D )
ldualvsass.w
|- ( ph -> W e. LMod )
ldualvsass.x
|- ( ph -> X e. K )
ldualvsass.y
|- ( ph -> Y e. K )
ldualvsass.g
|- ( ph -> G e. F )
Assertion ldualvsass
|- ( ph -> ( ( Y .X. X ) .x. G ) = ( X .x. ( Y .x. G ) ) )

Proof

Step Hyp Ref Expression
1 ldualvsass.f
 |-  F = ( LFnl ` W )
2 ldualvsass.r
 |-  R = ( Scalar ` W )
3 ldualvsass.k
 |-  K = ( Base ` R )
4 ldualvsass.t
 |-  .X. = ( .r ` R )
5 ldualvsass.d
 |-  D = ( LDual ` W )
6 ldualvsass.s
 |-  .x. = ( .s ` D )
7 ldualvsass.w
 |-  ( ph -> W e. LMod )
8 ldualvsass.x
 |-  ( ph -> X e. K )
9 ldualvsass.y
 |-  ( ph -> Y e. K )
10 ldualvsass.g
 |-  ( ph -> G e. F )
11 eqid
 |-  ( Base ` W ) = ( Base ` W )
12 11 2 3 4 1 7 9 8 10 lflvsass
 |-  ( ph -> ( G oF .X. ( ( Base ` W ) X. { ( Y .X. X ) } ) ) = ( ( G oF .X. ( ( Base ` W ) X. { Y } ) ) oF .X. ( ( Base ` W ) X. { X } ) ) )
13 2 lmodring
 |-  ( W e. LMod -> R e. Ring )
14 7 13 syl
 |-  ( ph -> R e. Ring )
15 3 4 ringcl
 |-  ( ( R e. Ring /\ Y e. K /\ X e. K ) -> ( Y .X. X ) e. K )
16 14 9 8 15 syl3anc
 |-  ( ph -> ( Y .X. X ) e. K )
17 1 11 2 3 4 5 6 7 16 10 ldualvs
 |-  ( ph -> ( ( Y .X. X ) .x. G ) = ( G oF .X. ( ( Base ` W ) X. { ( Y .X. X ) } ) ) )
18 11 2 3 4 1 7 10 9 lflvscl
 |-  ( ph -> ( G oF .X. ( ( Base ` W ) X. { Y } ) ) e. F )
19 1 11 2 3 4 5 6 7 8 18 ldualvs
 |-  ( ph -> ( X .x. ( G oF .X. ( ( Base ` W ) X. { Y } ) ) ) = ( ( G oF .X. ( ( Base ` W ) X. { Y } ) ) oF .X. ( ( Base ` W ) X. { X } ) ) )
20 12 17 19 3eqtr4d
 |-  ( ph -> ( ( Y .X. X ) .x. G ) = ( X .x. ( G oF .X. ( ( Base ` W ) X. { Y } ) ) ) )
21 1 11 2 3 4 5 6 7 9 10 ldualvs
 |-  ( ph -> ( Y .x. G ) = ( G oF .X. ( ( Base ` W ) X. { Y } ) ) )
22 21 oveq2d
 |-  ( ph -> ( X .x. ( Y .x. G ) ) = ( X .x. ( G oF .X. ( ( Base ` W ) X. { Y } ) ) ) )
23 20 22 eqtr4d
 |-  ( ph -> ( ( Y .X. X ) .x. G ) = ( X .x. ( Y .x. G ) ) )