Metamath Proof Explorer


Theorem ldualvsass

Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014)

Ref Expression
Hypotheses ldualvsass.f F=LFnlW
ldualvsass.r R=ScalarW
ldualvsass.k K=BaseR
ldualvsass.t ×˙=R
ldualvsass.d D=LDualW
ldualvsass.s ·˙=D
ldualvsass.w φWLMod
ldualvsass.x φXK
ldualvsass.y φYK
ldualvsass.g φGF
Assertion ldualvsass φY×˙X·˙G=X·˙Y·˙G

Proof

Step Hyp Ref Expression
1 ldualvsass.f F=LFnlW
2 ldualvsass.r R=ScalarW
3 ldualvsass.k K=BaseR
4 ldualvsass.t ×˙=R
5 ldualvsass.d D=LDualW
6 ldualvsass.s ·˙=D
7 ldualvsass.w φWLMod
8 ldualvsass.x φXK
9 ldualvsass.y φYK
10 ldualvsass.g φGF
11 eqid BaseW=BaseW
12 11 2 3 4 1 7 9 8 10 lflvsass φG×˙fBaseW×Y×˙X=G×˙fBaseW×Y×˙fBaseW×X
13 2 lmodring WLModRRing
14 7 13 syl φRRing
15 3 4 ringcl RRingYKXKY×˙XK
16 14 9 8 15 syl3anc φY×˙XK
17 1 11 2 3 4 5 6 7 16 10 ldualvs φY×˙X·˙G=G×˙fBaseW×Y×˙X
18 11 2 3 4 1 7 10 9 lflvscl φG×˙fBaseW×YF
19 1 11 2 3 4 5 6 7 8 18 ldualvs φX·˙G×˙fBaseW×Y=G×˙fBaseW×Y×˙fBaseW×X
20 12 17 19 3eqtr4d φY×˙X·˙G=X·˙G×˙fBaseW×Y
21 1 11 2 3 4 5 6 7 9 10 ldualvs φY·˙G=G×˙fBaseW×Y
22 21 oveq2d φX·˙Y·˙G=X·˙G×˙fBaseW×Y
23 20 22 eqtr4d φY×˙X·˙G=X·˙Y·˙G