Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualvsass.f | |
|
ldualvsass.r | |
||
ldualvsass.k | |
||
ldualvsass.t | |
||
ldualvsass.d | |
||
ldualvsass.s | |
||
ldualvsass.w | |
||
ldualvsass.x | |
||
ldualvsass.y | |
||
ldualvsass.g | |
||
Assertion | ldualvsass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsass.f | |
|
2 | ldualvsass.r | |
|
3 | ldualvsass.k | |
|
4 | ldualvsass.t | |
|
5 | ldualvsass.d | |
|
6 | ldualvsass.s | |
|
7 | ldualvsass.w | |
|
8 | ldualvsass.x | |
|
9 | ldualvsass.y | |
|
10 | ldualvsass.g | |
|
11 | eqid | |
|
12 | 11 2 3 4 1 7 9 8 10 | lflvsass | |
13 | 2 | lmodring | |
14 | 7 13 | syl | |
15 | 3 4 | ringcl | |
16 | 14 9 8 15 | syl3anc | |
17 | 1 11 2 3 4 5 6 7 16 10 | ldualvs | |
18 | 11 2 3 4 1 7 10 9 | lflvscl | |
19 | 1 11 2 3 4 5 6 7 8 18 | ldualvs | |
20 | 12 17 19 | 3eqtr4d | |
21 | 1 11 2 3 4 5 6 7 9 10 | ldualvs | |
22 | 21 | oveq2d | |
23 | 20 22 | eqtr4d | |