Metamath Proof Explorer


Theorem lflvscl

Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014) (Revised by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses lflsccl.v V=BaseW
lflsccl.d D=ScalarW
lflsccl.k K=BaseD
lflsccl.t ·˙=D
lflsccl.f F=LFnlW
lflsccl.w φWLMod
lflsccl.g φGF
lflsccl.r φRK
Assertion lflvscl φG·˙fV×RF

Proof

Step Hyp Ref Expression
1 lflsccl.v V=BaseW
2 lflsccl.d D=ScalarW
3 lflsccl.k K=BaseD
4 lflsccl.t ·˙=D
5 lflsccl.f F=LFnlW
6 lflsccl.w φWLMod
7 lflsccl.g φGF
8 lflsccl.r φRK
9 1 a1i φV=BaseW
10 eqidd φ+W=+W
11 2 a1i φD=ScalarW
12 eqidd φW=W
13 3 a1i φK=BaseD
14 eqidd φ+D=+D
15 4 a1i φ·˙=D
16 5 a1i φF=LFnlW
17 2 lmodring WLModDRing
18 6 17 syl φDRing
19 3 4 ringcl DRingxKyKx·˙yK
20 19 3expb DRingxKyKx·˙yK
21 18 20 sylan φxKyKx·˙yK
22 2 3 1 5 lflf WLModGFG:VK
23 6 7 22 syl2anc φG:VK
24 fconst6g RKV×R:VK
25 8 24 syl φV×R:VK
26 1 fvexi VV
27 26 a1i φVV
28 inidm VV=V
29 21 23 25 27 27 28 off φG·˙fV×R:VK
30 6 adantr φrKxVyVWLMod
31 7 adantr φrKxVyVGF
32 simpr1 φrKxVyVrK
33 simpr2 φrKxVyVxV
34 simpr3 φrKxVyVyV
35 eqid +W=+W
36 eqid W=W
37 eqid +D=+D
38 1 35 2 36 3 37 4 5 lfli WLModGFrKxVyVGrWx+Wy=r·˙Gx+DGy
39 30 31 32 33 34 38 syl113anc φrKxVyVGrWx+Wy=r·˙Gx+DGy
40 39 oveq1d φrKxVyVGrWx+Wy·˙R=r·˙Gx+DGy·˙R
41 18 adantr φrKxVyVDRing
42 2 3 1 5 lflcl WLModGFxVGxK
43 30 31 33 42 syl3anc φrKxVyVGxK
44 3 4 ringcl DRingrKGxKr·˙GxK
45 41 32 43 44 syl3anc φrKxVyVr·˙GxK
46 2 3 1 5 lflcl WLModGFyVGyK
47 30 31 34 46 syl3anc φrKxVyVGyK
48 8 adantr φrKxVyVRK
49 3 37 4 ringdir DRingr·˙GxKGyKRKr·˙Gx+DGy·˙R=r·˙Gx·˙R+DGy·˙R
50 41 45 47 48 49 syl13anc φrKxVyVr·˙Gx+DGy·˙R=r·˙Gx·˙R+DGy·˙R
51 3 4 ringass DRingrKGxKRKr·˙Gx·˙R=r·˙Gx·˙R
52 41 32 43 48 51 syl13anc φrKxVyVr·˙Gx·˙R=r·˙Gx·˙R
53 52 oveq1d φrKxVyVr·˙Gx·˙R+DGy·˙R=r·˙Gx·˙R+DGy·˙R
54 40 50 53 3eqtrd φrKxVyVGrWx+Wy·˙R=r·˙Gx·˙R+DGy·˙R
55 1 2 36 3 lmodvscl WLModrKxVrWxV
56 30 32 33 55 syl3anc φrKxVyVrWxV
57 1 35 lmodvacl WLModrWxVyVrWx+WyV
58 30 56 34 57 syl3anc φrKxVyVrWx+WyV
59 23 ffnd φGFnV
60 eqidd φrWx+WyVGrWx+Wy=GrWx+Wy
61 27 8 59 60 ofc2 φrWx+WyVG·˙fV×RrWx+Wy=GrWx+Wy·˙R
62 58 61 syldan φrKxVyVG·˙fV×RrWx+Wy=GrWx+Wy·˙R
63 eqidd φxVGx=Gx
64 27 8 59 63 ofc2 φxVG·˙fV×Rx=Gx·˙R
65 33 64 syldan φrKxVyVG·˙fV×Rx=Gx·˙R
66 65 oveq2d φrKxVyVr·˙G·˙fV×Rx=r·˙Gx·˙R
67 eqidd φyVGy=Gy
68 27 8 59 67 ofc2 φyVG·˙fV×Ry=Gy·˙R
69 34 68 syldan φrKxVyVG·˙fV×Ry=Gy·˙R
70 66 69 oveq12d φrKxVyVr·˙G·˙fV×Rx+DG·˙fV×Ry=r·˙Gx·˙R+DGy·˙R
71 54 62 70 3eqtr4d φrKxVyVG·˙fV×RrWx+Wy=r·˙G·˙fV×Rx+DG·˙fV×Ry
72 9 10 11 12 13 14 15 16 29 71 6 islfld φG·˙fV×RF