| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflsccl.v |
|
| 2 |
|
lflsccl.d |
|
| 3 |
|
lflsccl.k |
|
| 4 |
|
lflsccl.t |
|
| 5 |
|
lflsccl.f |
|
| 6 |
|
lflsccl.w |
|
| 7 |
|
lflsccl.g |
|
| 8 |
|
lflsccl.r |
|
| 9 |
1
|
a1i |
|
| 10 |
|
eqidd |
|
| 11 |
2
|
a1i |
|
| 12 |
|
eqidd |
|
| 13 |
3
|
a1i |
|
| 14 |
|
eqidd |
|
| 15 |
4
|
a1i |
|
| 16 |
5
|
a1i |
|
| 17 |
2
|
lmodring |
|
| 18 |
6 17
|
syl |
|
| 19 |
3 4
|
ringcl |
|
| 20 |
19
|
3expb |
|
| 21 |
18 20
|
sylan |
|
| 22 |
2 3 1 5
|
lflf |
|
| 23 |
6 7 22
|
syl2anc |
|
| 24 |
|
fconst6g |
|
| 25 |
8 24
|
syl |
|
| 26 |
1
|
fvexi |
|
| 27 |
26
|
a1i |
|
| 28 |
|
inidm |
|
| 29 |
21 23 25 27 27 28
|
off |
|
| 30 |
6
|
adantr |
|
| 31 |
7
|
adantr |
|
| 32 |
|
simpr1 |
|
| 33 |
|
simpr2 |
|
| 34 |
|
simpr3 |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
1 35 2 36 3 37 4 5
|
lfli |
|
| 39 |
30 31 32 33 34 38
|
syl113anc |
|
| 40 |
39
|
oveq1d |
|
| 41 |
18
|
adantr |
|
| 42 |
2 3 1 5
|
lflcl |
|
| 43 |
30 31 33 42
|
syl3anc |
|
| 44 |
3 4
|
ringcl |
|
| 45 |
41 32 43 44
|
syl3anc |
|
| 46 |
2 3 1 5
|
lflcl |
|
| 47 |
30 31 34 46
|
syl3anc |
|
| 48 |
8
|
adantr |
|
| 49 |
3 37 4
|
ringdir |
|
| 50 |
41 45 47 48 49
|
syl13anc |
|
| 51 |
3 4
|
ringass |
|
| 52 |
41 32 43 48 51
|
syl13anc |
|
| 53 |
52
|
oveq1d |
|
| 54 |
40 50 53
|
3eqtrd |
|
| 55 |
1 2 36 3
|
lmodvscl |
|
| 56 |
30 32 33 55
|
syl3anc |
|
| 57 |
1 35
|
lmodvacl |
|
| 58 |
30 56 34 57
|
syl3anc |
|
| 59 |
23
|
ffnd |
|
| 60 |
|
eqidd |
|
| 61 |
27 8 59 60
|
ofc2 |
|
| 62 |
58 61
|
syldan |
|
| 63 |
|
eqidd |
|
| 64 |
27 8 59 63
|
ofc2 |
|
| 65 |
33 64
|
syldan |
|
| 66 |
65
|
oveq2d |
|
| 67 |
|
eqidd |
|
| 68 |
27 8 59 67
|
ofc2 |
|
| 69 |
34 68
|
syldan |
|
| 70 |
66 69
|
oveq12d |
|
| 71 |
54 62 70
|
3eqtr4d |
|
| 72 |
9 10 11 12 13 14 15 16 29 71 6
|
islfld |
|