Metamath Proof Explorer


Theorem lflvsdi1

Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses lfldi.v V=BaseW
lfldi.r R=ScalarW
lfldi.k K=BaseR
lfldi.p +˙=+R
lfldi.t ·˙=R
lfldi.f F=LFnlW
lfldi.w φWLMod
lfldi.x φXK
lfldi1.g φGF
lfldi1.h φHF
Assertion lflvsdi1 φG+˙fH·˙fV×X=G·˙fV×X+˙fH·˙fV×X

Proof

Step Hyp Ref Expression
1 lfldi.v V=BaseW
2 lfldi.r R=ScalarW
3 lfldi.k K=BaseR
4 lfldi.p +˙=+R
5 lfldi.t ·˙=R
6 lfldi.f F=LFnlW
7 lfldi.w φWLMod
8 lfldi.x φXK
9 lfldi1.g φGF
10 lfldi1.h φHF
11 1 fvexi VV
12 11 a1i φVV
13 fconst6g XKV×X:VK
14 8 13 syl φV×X:VK
15 2 3 1 6 lflf WLModGFG:VK
16 7 9 15 syl2anc φG:VK
17 2 3 1 6 lflf WLModHFH:VK
18 7 10 17 syl2anc φH:VK
19 2 lmodring WLModRRing
20 7 19 syl φRRing
21 3 4 5 ringdir RRingxKyKzKx+˙y·˙z=x·˙z+˙y·˙z
22 20 21 sylan φxKyKzKx+˙y·˙z=x·˙z+˙y·˙z
23 12 14 16 18 22 caofdir φG+˙fH·˙fV×X=G·˙fV×X+˙fH·˙fV×X