Metamath Proof Explorer


Theorem caofdir

Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses caofdi.1 φ A V
caofdi.2 φ F : A K
caofdi.3 φ G : A S
caofdi.4 φ H : A S
caofdir.5 φ x S y S z K x R y T z = x T z O y T z
Assertion caofdir φ G R f H T f F = G T f F O f H T f F

Proof

Step Hyp Ref Expression
1 caofdi.1 φ A V
2 caofdi.2 φ F : A K
3 caofdi.3 φ G : A S
4 caofdi.4 φ H : A S
5 caofdir.5 φ x S y S z K x R y T z = x T z O y T z
6 5 adantlr φ w A x S y S z K x R y T z = x T z O y T z
7 3 ffvelrnda φ w A G w S
8 4 ffvelrnda φ w A H w S
9 2 ffvelrnda φ w A F w K
10 6 7 8 9 caovdird φ w A G w R H w T F w = G w T F w O H w T F w
11 10 mpteq2dva φ w A G w R H w T F w = w A G w T F w O H w T F w
12 ovexd φ w A G w R H w V
13 3 feqmptd φ G = w A G w
14 4 feqmptd φ H = w A H w
15 1 7 8 13 14 offval2 φ G R f H = w A G w R H w
16 2 feqmptd φ F = w A F w
17 1 12 9 15 16 offval2 φ G R f H T f F = w A G w R H w T F w
18 ovexd φ w A G w T F w V
19 ovexd φ w A H w T F w V
20 1 7 9 13 16 offval2 φ G T f F = w A G w T F w
21 1 8 9 14 16 offval2 φ H T f F = w A H w T F w
22 1 18 19 20 21 offval2 φ G T f F O f H T f F = w A G w T F w O H w T F w
23 11 17 22 3eqtr4d φ G R f H T f F = G T f F O f H T f F