Step |
Hyp |
Ref |
Expression |
1 |
|
caofdi.1 |
|- ( ph -> A e. V ) |
2 |
|
caofdi.2 |
|- ( ph -> F : A --> K ) |
3 |
|
caofdi.3 |
|- ( ph -> G : A --> S ) |
4 |
|
caofdi.4 |
|- ( ph -> H : A --> S ) |
5 |
|
caofdir.5 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) |
6 |
5
|
adantlr |
|- ( ( ( ph /\ w e. A ) /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) |
7 |
3
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
8 |
4
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
9 |
2
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. K ) |
10 |
6 7 8 9
|
caovdird |
|- ( ( ph /\ w e. A ) -> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) = ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) |
11 |
10
|
mpteq2dva |
|- ( ph -> ( w e. A |-> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) ) = ( w e. A |-> ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) ) |
12 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( H ` w ) ) e. _V ) |
13 |
3
|
feqmptd |
|- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
14 |
4
|
feqmptd |
|- ( ph -> H = ( w e. A |-> ( H ` w ) ) ) |
15 |
1 7 8 13 14
|
offval2 |
|- ( ph -> ( G oF R H ) = ( w e. A |-> ( ( G ` w ) R ( H ` w ) ) ) ) |
16 |
2
|
feqmptd |
|- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
17 |
1 12 9 15 16
|
offval2 |
|- ( ph -> ( ( G oF R H ) oF T F ) = ( w e. A |-> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) ) ) |
18 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) T ( F ` w ) ) e. _V ) |
19 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( H ` w ) T ( F ` w ) ) e. _V ) |
20 |
1 7 9 13 16
|
offval2 |
|- ( ph -> ( G oF T F ) = ( w e. A |-> ( ( G ` w ) T ( F ` w ) ) ) ) |
21 |
1 8 9 14 16
|
offval2 |
|- ( ph -> ( H oF T F ) = ( w e. A |-> ( ( H ` w ) T ( F ` w ) ) ) ) |
22 |
1 18 19 20 21
|
offval2 |
|- ( ph -> ( ( G oF T F ) oF O ( H oF T F ) ) = ( w e. A |-> ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) ) |
23 |
11 17 22
|
3eqtr4d |
|- ( ph -> ( ( G oF R H ) oF T F ) = ( ( G oF T F ) oF O ( H oF T F ) ) ) |