| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caonncan.i |
|- ( ph -> I e. V ) |
| 2 |
|
caonncan.a |
|- ( ph -> A : I --> S ) |
| 3 |
|
caonncan.b |
|- ( ph -> B : I --> S ) |
| 4 |
|
caonncan.z |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x M ( x M y ) ) = y ) |
| 5 |
2
|
ffvelcdmda |
|- ( ( ph /\ z e. I ) -> ( A ` z ) e. S ) |
| 6 |
3
|
ffvelcdmda |
|- ( ( ph /\ z e. I ) -> ( B ` z ) e. S ) |
| 7 |
4
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. S ( x M ( x M y ) ) = y ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ z e. I ) -> A. x e. S A. y e. S ( x M ( x M y ) ) = y ) |
| 9 |
|
id |
|- ( x = ( A ` z ) -> x = ( A ` z ) ) |
| 10 |
|
oveq1 |
|- ( x = ( A ` z ) -> ( x M y ) = ( ( A ` z ) M y ) ) |
| 11 |
9 10
|
oveq12d |
|- ( x = ( A ` z ) -> ( x M ( x M y ) ) = ( ( A ` z ) M ( ( A ` z ) M y ) ) ) |
| 12 |
11
|
eqeq1d |
|- ( x = ( A ` z ) -> ( ( x M ( x M y ) ) = y <-> ( ( A ` z ) M ( ( A ` z ) M y ) ) = y ) ) |
| 13 |
|
oveq2 |
|- ( y = ( B ` z ) -> ( ( A ` z ) M y ) = ( ( A ` z ) M ( B ` z ) ) ) |
| 14 |
13
|
oveq2d |
|- ( y = ( B ` z ) -> ( ( A ` z ) M ( ( A ` z ) M y ) ) = ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) ) |
| 15 |
|
id |
|- ( y = ( B ` z ) -> y = ( B ` z ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( y = ( B ` z ) -> ( ( ( A ` z ) M ( ( A ` z ) M y ) ) = y <-> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) = ( B ` z ) ) ) |
| 17 |
12 16
|
rspc2va |
|- ( ( ( ( A ` z ) e. S /\ ( B ` z ) e. S ) /\ A. x e. S A. y e. S ( x M ( x M y ) ) = y ) -> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) = ( B ` z ) ) |
| 18 |
5 6 8 17
|
syl21anc |
|- ( ( ph /\ z e. I ) -> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) = ( B ` z ) ) |
| 19 |
18
|
mpteq2dva |
|- ( ph -> ( z e. I |-> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) ) = ( z e. I |-> ( B ` z ) ) ) |
| 20 |
|
fvexd |
|- ( ( ph /\ z e. I ) -> ( A ` z ) e. _V ) |
| 21 |
|
ovexd |
|- ( ( ph /\ z e. I ) -> ( ( A ` z ) M ( B ` z ) ) e. _V ) |
| 22 |
2
|
feqmptd |
|- ( ph -> A = ( z e. I |-> ( A ` z ) ) ) |
| 23 |
|
fvexd |
|- ( ( ph /\ z e. I ) -> ( B ` z ) e. _V ) |
| 24 |
3
|
feqmptd |
|- ( ph -> B = ( z e. I |-> ( B ` z ) ) ) |
| 25 |
1 20 23 22 24
|
offval2 |
|- ( ph -> ( A oF M B ) = ( z e. I |-> ( ( A ` z ) M ( B ` z ) ) ) ) |
| 26 |
1 20 21 22 25
|
offval2 |
|- ( ph -> ( A oF M ( A oF M B ) ) = ( z e. I |-> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) ) ) |
| 27 |
19 26 24
|
3eqtr4d |
|- ( ph -> ( A oF M ( A oF M B ) ) = B ) |