| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caonncan.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 2 |
|
caonncan.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝑆 ) |
| 3 |
|
caonncan.b |
⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ 𝑆 ) |
| 4 |
|
caonncan.z |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
| 5 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑧 ) ∈ 𝑆 ) |
| 6 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑧 ) ∈ 𝑆 ) |
| 7 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
| 9 |
|
id |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → 𝑥 = ( 𝐴 ‘ 𝑧 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( 𝑥 𝑀 𝑦 ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) |
| 11 |
9 10
|
oveq12d |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ↔ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = 𝑦 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 15 |
|
id |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → 𝑦 = ( 𝐵 ‘ 𝑧 ) ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = 𝑦 ↔ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) ) |
| 17 |
12 16
|
rspc2va |
⊢ ( ( ( ( 𝐴 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑧 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) |
| 18 |
5 6 8 17
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) |
| 19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝐵 ‘ 𝑧 ) ) ) |
| 20 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑧 ) ∈ V ) |
| 21 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ∈ V ) |
| 22 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐴 ‘ 𝑧 ) ) ) |
| 23 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑧 ) ∈ V ) |
| 24 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐵 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐵 ‘ 𝑧 ) ) ) |
| 25 |
1 20 23 22 24
|
offval2 |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 𝐵 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 26 |
1 20 21 22 25
|
offval2 |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
| 27 |
19 26 24
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = 𝐵 ) |