Metamath Proof Explorer


Theorem caovdird

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdirg.1 φxSySzKxFyGz=xGzHyGz
caovdird.2 φAS
caovdird.3 φBS
caovdird.4 φCK
Assertion caovdird φAFBGC=AGCHBGC

Proof

Step Hyp Ref Expression
1 caovdirg.1 φxSySzKxFyGz=xGzHyGz
2 caovdird.2 φAS
3 caovdird.3 φBS
4 caovdird.4 φCK
5 id φφ
6 1 caovdirg φASBSCKAFBGC=AGCHBGC
7 5 2 3 4 6 syl13anc φAFBGC=AGCHBGC