Metamath Proof Explorer


Theorem lflf

Description: A linear functional is a function from vectors to scalars. ( lnfnfi analog.) (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lflf.d D = Scalar W
lflf.k K = Base D
lflf.v V = Base W
lflf.f F = LFnl W
Assertion lflf W X G F G : V K

Proof

Step Hyp Ref Expression
1 lflf.d D = Scalar W
2 lflf.k K = Base D
3 lflf.v V = Base W
4 lflf.f F = LFnl W
5 eqid + W = + W
6 eqid W = W
7 eqid + D = + D
8 eqid D = D
9 3 5 1 6 2 7 8 4 islfl W X G F G : V K r K x V y V G r W x + W y = r D G x + D G y
10 9 simprbda W X G F G : V K