Metamath Proof Explorer


Theorem lflf

Description: A linear functional is a function from vectors to scalars. ( lnfnfi analog.) (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lflf.d D=ScalarW
lflf.k K=BaseD
lflf.v V=BaseW
lflf.f F=LFnlW
Assertion lflf WXGFG:VK

Proof

Step Hyp Ref Expression
1 lflf.d D=ScalarW
2 lflf.k K=BaseD
3 lflf.v V=BaseW
4 lflf.f F=LFnlW
5 eqid +W=+W
6 eqid W=W
7 eqid +D=+D
8 eqid D=D
9 3 5 1 6 2 7 8 4 islfl WXGFG:VKrKxVyVGrWx+Wy=rDGx+DGy
10 9 simprbda WXGFG:VK