Metamath Proof Explorer


Theorem lflcl

Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lflf.d D=ScalarW
lflf.k K=BaseD
lflf.v V=BaseW
lflf.f F=LFnlW
Assertion lflcl WYGFXVGXK

Proof

Step Hyp Ref Expression
1 lflf.d D=ScalarW
2 lflf.k K=BaseD
3 lflf.v V=BaseW
4 lflf.f F=LFnlW
5 1 2 3 4 lflf WYGFG:VK
6 5 3adant3 WYGFXVG:VK
7 simp3 WYGFXVXV
8 6 7 ffvelcdmd WYGFXVGXK