Metamath Proof Explorer


Theorem lflcl

Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lflf.d D = Scalar W
lflf.k K = Base D
lflf.v V = Base W
lflf.f F = LFnl W
Assertion lflcl W Y G F X V G X K

Proof

Step Hyp Ref Expression
1 lflf.d D = Scalar W
2 lflf.k K = Base D
3 lflf.v V = Base W
4 lflf.f F = LFnl W
5 1 2 3 4 lflf W Y G F G : V K
6 5 3adant3 W Y G F X V G : V K
7 simp3 W Y G F X V X V
8 6 7 ffvelrnd W Y G F X V G X K