Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lflf.d | ⊢ 𝐷 = ( Scalar ‘ 𝑊 ) | |
lflf.k | ⊢ 𝐾 = ( Base ‘ 𝐷 ) | ||
lflf.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
lflf.f | ⊢ 𝐹 = ( LFnl ‘ 𝑊 ) | ||
Assertion | lflcl | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflf.d | ⊢ 𝐷 = ( Scalar ‘ 𝑊 ) | |
2 | lflf.k | ⊢ 𝐾 = ( Base ‘ 𝐷 ) | |
3 | lflf.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
4 | lflf.f | ⊢ 𝐹 = ( LFnl ‘ 𝑊 ) | |
5 | 1 2 3 4 | lflf | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ 𝐾 ) |
6 | 5 | 3adant3 | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → 𝐺 : 𝑉 ⟶ 𝐾 ) |
7 | simp3 | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
8 | 6 7 | ffvelrnd | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐾 ) |