Metamath Proof Explorer


Theorem lflcl

Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lflf.d 𝐷 = ( Scalar ‘ 𝑊 )
lflf.k 𝐾 = ( Base ‘ 𝐷 )
lflf.v 𝑉 = ( Base ‘ 𝑊 )
lflf.f 𝐹 = ( LFnl ‘ 𝑊 )
Assertion lflcl ( ( 𝑊𝑌𝐺𝐹𝑋𝑉 ) → ( 𝐺𝑋 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 lflf.d 𝐷 = ( Scalar ‘ 𝑊 )
2 lflf.k 𝐾 = ( Base ‘ 𝐷 )
3 lflf.v 𝑉 = ( Base ‘ 𝑊 )
4 lflf.f 𝐹 = ( LFnl ‘ 𝑊 )
5 1 2 3 4 lflf ( ( 𝑊𝑌𝐺𝐹 ) → 𝐺 : 𝑉𝐾 )
6 5 3adant3 ( ( 𝑊𝑌𝐺𝐹𝑋𝑉 ) → 𝐺 : 𝑉𝐾 )
7 simp3 ( ( 𝑊𝑌𝐺𝐹𝑋𝑉 ) → 𝑋𝑉 )
8 6 7 ffvelrnd ( ( 𝑊𝑌𝐺𝐹𝑋𝑉 ) → ( 𝐺𝑋 ) ∈ 𝐾 )