| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl0.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lfl0.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 3 |
|
lfl0.z |
⊢ 𝑍 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lfl0.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 5 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 6 |
|
simpr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 ∈ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
| 9 |
1 7 8
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 12 |
11 3
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 𝑍 ∈ ( Base ‘ 𝑊 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝑍 ∈ ( Base ‘ 𝑊 ) ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 16 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
| 17 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
| 18 |
11 14 1 15 7 16 17 4
|
lfli |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ∧ 𝑍 ∈ ( Base ‘ 𝑊 ) ∧ 𝑍 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ( +g ‘ 𝑊 ) 𝑍 ) ) = ( ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ) |
| 19 |
5 6 10 13 13 18
|
syl113anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐺 ‘ ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ( +g ‘ 𝑊 ) 𝑍 ) ) = ( ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ) |
| 20 |
11 1 15 7
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ∧ 𝑍 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( Base ‘ 𝑊 ) ) |
| 21 |
5 10 13 20
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
11 14 3
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ( +g ‘ 𝑊 ) 𝑍 ) = ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 23 |
21 22
|
syldan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ( +g ‘ 𝑊 ) 𝑍 ) = ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 24 |
11 1 15 8
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 𝑍 ) |
| 25 |
13 24
|
syldan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 𝑍 ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ( +g ‘ 𝑊 ) 𝑍 ) = 𝑍 ) |
| 27 |
26
|
fveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐺 ‘ ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ( +g ‘ 𝑊 ) 𝑍 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 28 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐷 ∈ Ring ) |
| 30 |
1 7 11 4
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑍 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) |
| 31 |
13 30
|
mpd3an3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐺 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) |
| 32 |
7 17 8
|
ringlidm |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝐺 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 33 |
29 31 32
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = ( ( 𝐺 ‘ 𝑍 ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ) |
| 35 |
19 27 34
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐺 ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝑍 ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐺 ‘ 𝑍 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = ( ( ( 𝐺 ‘ 𝑍 ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ) |
| 37 |
|
ringgrp |
⊢ ( 𝐷 ∈ Ring → 𝐷 ∈ Grp ) |
| 38 |
29 37
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐷 ∈ Grp ) |
| 39 |
|
eqid |
⊢ ( -g ‘ 𝐷 ) = ( -g ‘ 𝐷 ) |
| 40 |
7 2 39
|
grpsubid |
⊢ ( ( 𝐷 ∈ Grp ∧ ( 𝐺 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐺 ‘ 𝑍 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = 0 ) |
| 41 |
38 31 40
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐺 ‘ 𝑍 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = 0 ) |
| 42 |
7 16 39
|
grppncan |
⊢ ( ( 𝐷 ∈ Grp ∧ ( 𝐺 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝐺 ‘ 𝑍 ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 43 |
38 31 31 42
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( ( 𝐺 ‘ 𝑍 ) ( +g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑍 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 44 |
36 41 43
|
3eqtr3rd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐺 ‘ 𝑍 ) = 0 ) |