Metamath Proof Explorer


Theorem lfli

Description: Property of a linear functional. ( lnfnli analog.) (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lflset.v 𝑉 = ( Base ‘ 𝑊 )
lflset.a + = ( +g𝑊 )
lflset.d 𝐷 = ( Scalar ‘ 𝑊 )
lflset.s · = ( ·𝑠𝑊 )
lflset.k 𝐾 = ( Base ‘ 𝐷 )
lflset.p = ( +g𝐷 )
lflset.t × = ( .r𝐷 )
lflset.f 𝐹 = ( LFnl ‘ 𝑊 )
Assertion lfli ( ( 𝑊𝑍𝐺𝐹 ∧ ( 𝑅𝐾𝑋𝑉𝑌𝑉 ) ) → ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑌 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 lflset.v 𝑉 = ( Base ‘ 𝑊 )
2 lflset.a + = ( +g𝑊 )
3 lflset.d 𝐷 = ( Scalar ‘ 𝑊 )
4 lflset.s · = ( ·𝑠𝑊 )
5 lflset.k 𝐾 = ( Base ‘ 𝐷 )
6 lflset.p = ( +g𝐷 )
7 lflset.t × = ( .r𝐷 )
8 lflset.f 𝐹 = ( LFnl ‘ 𝑊 )
9 1 2 3 4 5 6 7 8 islfl ( 𝑊𝑍 → ( 𝐺𝐹 ↔ ( 𝐺 : 𝑉𝐾 ∧ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) ) ) )
10 9 simplbda ( ( 𝑊𝑍𝐺𝐹 ) → ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) )
11 10 3adant3 ( ( 𝑊𝑍𝐺𝐹 ∧ ( 𝑅𝐾𝑋𝑉𝑌𝑉 ) ) → ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) )
12 oveq1 ( 𝑟 = 𝑅 → ( 𝑟 · 𝑥 ) = ( 𝑅 · 𝑥 ) )
13 12 fvoveq1d ( 𝑟 = 𝑅 → ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( 𝐺 ‘ ( ( 𝑅 · 𝑥 ) + 𝑦 ) ) )
14 oveq1 ( 𝑟 = 𝑅 → ( 𝑟 × ( 𝐺𝑥 ) ) = ( 𝑅 × ( 𝐺𝑥 ) ) )
15 14 oveq1d ( 𝑟 = 𝑅 → ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) )
16 13 15 eqeq12d ( 𝑟 = 𝑅 → ( ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) ↔ ( 𝐺 ‘ ( ( 𝑅 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) ) )
17 oveq2 ( 𝑥 = 𝑋 → ( 𝑅 · 𝑥 ) = ( 𝑅 · 𝑋 ) )
18 17 fvoveq1d ( 𝑥 = 𝑋 → ( 𝐺 ‘ ( ( 𝑅 · 𝑥 ) + 𝑦 ) ) = ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑦 ) ) )
19 fveq2 ( 𝑥 = 𝑋 → ( 𝐺𝑥 ) = ( 𝐺𝑋 ) )
20 19 oveq2d ( 𝑥 = 𝑋 → ( 𝑅 × ( 𝐺𝑥 ) ) = ( 𝑅 × ( 𝐺𝑋 ) ) )
21 20 oveq1d ( 𝑥 = 𝑋 → ( ( 𝑅 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑦 ) ) )
22 18 21 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝐺 ‘ ( ( 𝑅 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) ↔ ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑦 ) ) ) )
23 oveq2 ( 𝑦 = 𝑌 → ( ( 𝑅 · 𝑋 ) + 𝑦 ) = ( ( 𝑅 · 𝑋 ) + 𝑌 ) )
24 23 fveq2d ( 𝑦 = 𝑌 → ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑦 ) ) = ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑌 ) ) )
25 fveq2 ( 𝑦 = 𝑌 → ( 𝐺𝑦 ) = ( 𝐺𝑌 ) )
26 25 oveq2d ( 𝑦 = 𝑌 → ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑌 ) ) )
27 24 26 eqeq12d ( 𝑦 = 𝑌 → ( ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑦 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑦 ) ) ↔ ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑌 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑌 ) ) ) )
28 16 22 27 rspc3v ( ( 𝑅𝐾𝑋𝑉𝑌𝑉 ) → ( ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) → ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑌 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑌 ) ) ) )
29 28 3ad2ant3 ( ( 𝑊𝑍𝐺𝐹 ∧ ( 𝑅𝐾𝑋𝑉𝑌𝑉 ) ) → ( ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝐺 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝐺𝑥 ) ) ( 𝐺𝑦 ) ) → ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑌 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑌 ) ) ) )
30 11 29 mpd ( ( 𝑊𝑍𝐺𝐹 ∧ ( 𝑅𝐾𝑋𝑉𝑌𝑉 ) ) → ( 𝐺 ‘ ( ( 𝑅 · 𝑋 ) + 𝑌 ) ) = ( ( 𝑅 × ( 𝐺𝑋 ) ) ( 𝐺𝑌 ) ) )