Metamath Proof Explorer


Theorem lnfnli

Description: Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 𝑇 ∈ LinFn
Assertion lnfnli ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 lnfnl.1 𝑇 ∈ LinFn
2 lnfnl ( ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )
3 1 2 mpanl1 ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )
4 3 3impb ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )