Metamath Proof Explorer


Theorem lnfnli

Description: Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 T LinFn
Assertion lnfnli A B C T A B + C = A T B + T C

Proof

Step Hyp Ref Expression
1 lnfnl.1 T LinFn
2 lnfnl T LinFn A B C T A B + C = A T B + T C
3 1 2 mpanl1 A B C T A B + C = A T B + T C
4 3 3impb A B C T A B + C = A T B + T C