Metamath Proof Explorer


Theorem lnfnli

Description: Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1
|- T e. LinFn
Assertion lnfnli
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) )

Proof

Step Hyp Ref Expression
1 lnfnl.1
 |-  T e. LinFn
2 lnfnl
 |-  ( ( ( T e. LinFn /\ A e. CC ) /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) )
3 1 2 mpanl1
 |-  ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) )
4 3 3impb
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) )