Metamath Proof Explorer


Theorem lnfnfi

Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 𝑇 ∈ LinFn
Assertion lnfnfi 𝑇 : ℋ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 lnfnl.1 𝑇 ∈ LinFn
2 lnfnf ( 𝑇 ∈ LinFn → 𝑇 : ℋ ⟶ ℂ )
3 1 2 ax-mp 𝑇 : ℋ ⟶ ℂ