Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
3 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
4 |
3
|
ffvelrni |
⊢ ( 0ℎ ∈ ℋ → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) |
5 |
2 4
|
ax-mp |
⊢ ( 𝑇 ‘ 0ℎ ) ∈ ℂ |
6 |
5 5
|
pncan3oi |
⊢ ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
1
|
lnfnli |
⊢ ( ( 1 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
9 |
7 2 2 8
|
mp3an |
⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) |
10 |
7 2
|
hvmulcli |
⊢ ( 1 ·ℎ 0ℎ ) ∈ ℋ |
11 |
|
ax-hvaddid |
⊢ ( ( 1 ·ℎ 0ℎ ) ∈ ℋ → ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) |
13 |
|
ax-hvmulid |
⊢ ( 0ℎ ∈ ℋ → ( 1 ·ℎ 0ℎ ) = 0ℎ ) |
14 |
2 13
|
ax-mp |
⊢ ( 1 ·ℎ 0ℎ ) = 0ℎ |
15 |
12 14
|
eqtri |
⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = 0ℎ |
16 |
15
|
fveq2i |
⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
17 |
9 16
|
eqtr3i |
⊢ ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
18 |
5
|
mulid2i |
⊢ ( 1 · ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
19 |
18
|
oveq1i |
⊢ ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) |
20 |
17 19
|
eqtr3i |
⊢ ( 𝑇 ‘ 0ℎ ) = ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) |
21 |
20
|
oveq1i |
⊢ ( ( 𝑇 ‘ 0ℎ ) − ( 𝑇 ‘ 0ℎ ) ) = ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) |
22 |
5
|
subidi |
⊢ ( ( 𝑇 ‘ 0ℎ ) − ( 𝑇 ‘ 0ℎ ) ) = 0 |
23 |
21 22
|
eqtr3i |
⊢ ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) = 0 |
24 |
6 23
|
eqtr3i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |