Metamath Proof Explorer


Theorem lnfn0i

Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 𝑇 ∈ LinFn
Assertion lnfn0i ( 𝑇 ‘ 0 ) = 0

Proof

Step Hyp Ref Expression
1 lnfnl.1 𝑇 ∈ LinFn
2 ax-hv0cl 0 ∈ ℋ
3 1 lnfnfi 𝑇 : ℋ ⟶ ℂ
4 3 ffvelrni ( 0 ∈ ℋ → ( 𝑇 ‘ 0 ) ∈ ℂ )
5 2 4 ax-mp ( 𝑇 ‘ 0 ) ∈ ℂ
6 5 5 pncan3oi ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 )
7 ax-1cn 1 ∈ ℂ
8 1 lnfnli ( ( 1 ∈ ℂ ∧ 0 ∈ ℋ ∧ 0 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) )
9 7 2 2 8 mp3an ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) )
10 7 2 hvmulcli ( 1 · 0 ) ∈ ℋ
11 ax-hvaddid ( ( 1 · 0 ) ∈ ℋ → ( ( 1 · 0 ) + 0 ) = ( 1 · 0 ) )
12 10 11 ax-mp ( ( 1 · 0 ) + 0 ) = ( 1 · 0 )
13 ax-hvmulid ( 0 ∈ ℋ → ( 1 · 0 ) = 0 )
14 2 13 ax-mp ( 1 · 0 ) = 0
15 12 14 eqtri ( ( 1 · 0 ) + 0 ) = 0
16 15 fveq2i ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( 𝑇 ‘ 0 )
17 9 16 eqtr3i ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 )
18 5 mulid2i ( 1 · ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 )
19 18 oveq1i ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) = ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) )
20 17 19 eqtr3i ( 𝑇 ‘ 0 ) = ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) )
21 20 oveq1i ( ( 𝑇 ‘ 0 ) − ( 𝑇 ‘ 0 ) ) = ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) )
22 5 subidi ( ( 𝑇 ‘ 0 ) − ( 𝑇 ‘ 0 ) ) = 0
23 21 22 eqtr3i ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) ) = 0
24 6 23 eqtr3i ( 𝑇 ‘ 0 ) = 0