Metamath Proof Explorer


Theorem lnfn0i

Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 T LinFn
Assertion lnfn0i T 0 = 0

Proof

Step Hyp Ref Expression
1 lnfnl.1 T LinFn
2 ax-hv0cl 0
3 1 lnfnfi T :
4 3 ffvelrni 0 T 0
5 2 4 ax-mp T 0
6 5 5 pncan3oi T 0 + T 0 - T 0 = T 0
7 ax-1cn 1
8 1 lnfnli 1 0 0 T 1 0 + 0 = 1 T 0 + T 0
9 7 2 2 8 mp3an T 1 0 + 0 = 1 T 0 + T 0
10 7 2 hvmulcli 1 0
11 ax-hvaddid 1 0 1 0 + 0 = 1 0
12 10 11 ax-mp 1 0 + 0 = 1 0
13 ax-hvmulid 0 1 0 = 0
14 2 13 ax-mp 1 0 = 0
15 12 14 eqtri 1 0 + 0 = 0
16 15 fveq2i T 1 0 + 0 = T 0
17 9 16 eqtr3i 1 T 0 + T 0 = T 0
18 5 mulid2i 1 T 0 = T 0
19 18 oveq1i 1 T 0 + T 0 = T 0 + T 0
20 17 19 eqtr3i T 0 = T 0 + T 0
21 20 oveq1i T 0 T 0 = T 0 + T 0 - T 0
22 5 subidi T 0 T 0 = 0
23 21 22 eqtr3i T 0 + T 0 - T 0 = 0
24 6 23 eqtr3i T 0 = 0