| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnfnl.1 |  |-  T e. LinFn | 
						
							| 2 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 3 | 1 | lnfnfi |  |-  T : ~H --> CC | 
						
							| 4 | 3 | ffvelcdmi |  |-  ( 0h e. ~H -> ( T ` 0h ) e. CC ) | 
						
							| 5 | 2 4 | ax-mp |  |-  ( T ` 0h ) e. CC | 
						
							| 6 | 5 5 | pncan3oi |  |-  ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) = ( T ` 0h ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 | 1 | lnfnli |  |-  ( ( 1 e. CC /\ 0h e. ~H /\ 0h e. ~H ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) ) | 
						
							| 9 | 7 2 2 8 | mp3an |  |-  ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) | 
						
							| 10 | 7 2 | hvmulcli |  |-  ( 1 .h 0h ) e. ~H | 
						
							| 11 |  | ax-hvaddid |  |-  ( ( 1 .h 0h ) e. ~H -> ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) | 
						
							| 13 |  | ax-hvmulid |  |-  ( 0h e. ~H -> ( 1 .h 0h ) = 0h ) | 
						
							| 14 | 2 13 | ax-mp |  |-  ( 1 .h 0h ) = 0h | 
						
							| 15 | 12 14 | eqtri |  |-  ( ( 1 .h 0h ) +h 0h ) = 0h | 
						
							| 16 | 15 | fveq2i |  |-  ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( T ` 0h ) | 
						
							| 17 | 9 16 | eqtr3i |  |-  ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) = ( T ` 0h ) | 
						
							| 18 | 5 | mullidi |  |-  ( 1 x. ( T ` 0h ) ) = ( T ` 0h ) | 
						
							| 19 | 18 | oveq1i |  |-  ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) = ( ( T ` 0h ) + ( T ` 0h ) ) | 
						
							| 20 | 17 19 | eqtr3i |  |-  ( T ` 0h ) = ( ( T ` 0h ) + ( T ` 0h ) ) | 
						
							| 21 | 20 | oveq1i |  |-  ( ( T ` 0h ) - ( T ` 0h ) ) = ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) | 
						
							| 22 | 5 | subidi |  |-  ( ( T ` 0h ) - ( T ` 0h ) ) = 0 | 
						
							| 23 | 21 22 | eqtr3i |  |-  ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) = 0 | 
						
							| 24 | 6 23 | eqtr3i |  |-  ( T ` 0h ) = 0 |