Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
|- T e. LinFn |
2 |
|
ax-1cn |
|- 1 e. CC |
3 |
1
|
lnfnli |
|- ( ( 1 e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 x. ( T ` A ) ) + ( T ` B ) ) ) |
4 |
2 3
|
mp3an1 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 x. ( T ` A ) ) + ( T ` B ) ) ) |
5 |
|
ax-hvmulid |
|- ( A e. ~H -> ( 1 .h A ) = A ) |
6 |
5
|
fvoveq1d |
|- ( A e. ~H -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) |
7 |
6
|
adantr |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) |
8 |
1
|
lnfnfi |
|- T : ~H --> CC |
9 |
8
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. CC ) |
10 |
9
|
mulid2d |
|- ( A e. ~H -> ( 1 x. ( T ` A ) ) = ( T ` A ) ) |
11 |
10
|
adantr |
|- ( ( A e. ~H /\ B e. ~H ) -> ( 1 x. ( T ` A ) ) = ( T ` A ) ) |
12 |
11
|
oveq1d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( 1 x. ( T ` A ) ) + ( T ` B ) ) = ( ( T ` A ) + ( T ` B ) ) ) |
13 |
4 7 12
|
3eqtr3d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) + ( T ` B ) ) ) |