Metamath Proof Explorer


Theorem mulid2i

Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995)

Ref Expression
Hypothesis axi.1 𝐴 ∈ ℂ
Assertion mulid2i ( 1 · 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 axi.1 𝐴 ∈ ℂ
2 mulid2 ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 )
3 1 2 ax-mp ( 1 · 𝐴 ) = 𝐴