Metamath Proof Explorer


Theorem mulid2i

Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995)

Ref Expression
Hypothesis axi.1
|- A e. CC
Assertion mulid2i
|- ( 1 x. A ) = A

Proof

Step Hyp Ref Expression
1 axi.1
 |-  A e. CC
2 mulid2
 |-  ( A e. CC -> ( 1 x. A ) = A )
3 1 2 ax-mp
 |-  ( 1 x. A ) = A