| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfladd.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lfladd.p |
⊢ ⨣ = ( +g ‘ 𝐷 ) |
| 3 |
|
lfladd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
lfladd.a |
⊢ + = ( +g ‘ 𝑊 ) |
| 5 |
|
lfladd.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 6 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 7 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐺 ∈ 𝐹 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
| 10 |
1 8 9
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ) |
| 12 |
|
simp3l |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑋 ∈ 𝑉 ) |
| 13 |
|
simp3r |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) |
| 14 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
| 16 |
3 4 1 14 8 2 15 5
|
lfli |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( ( 1r ‘ 𝐷 ) ∈ ( Base ‘ 𝐷 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ) = ( ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ⨣ ( 𝐺 ‘ 𝑌 ) ) ) |
| 17 |
6 7 11 12 13 16
|
syl113anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ) = ( ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ⨣ ( 𝐺 ‘ 𝑌 ) ) ) |
| 18 |
3 1 14 9
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 19 |
6 12 18
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 20 |
19
|
fvoveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( ( 1r ‘ 𝐷 ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ) = ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) ) |
| 21 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐷 ∈ Ring ) |
| 23 |
1 8 3 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 24 |
23
|
3adant3r |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 25 |
8 15 9
|
ringlidm |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) = ( 𝐺 ‘ 𝑋 ) ) |
| 26 |
22 24 25
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) = ( 𝐺 ‘ 𝑋 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 1r ‘ 𝐷 ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ⨣ ( 𝐺 ‘ 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) ⨣ ( 𝐺 ‘ 𝑌 ) ) ) |
| 28 |
17 20 27
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) ⨣ ( 𝐺 ‘ 𝑌 ) ) ) |