Metamath Proof Explorer


Theorem lfladd

Description: Property of a linear functional. ( lnfnaddi analog.) (Contributed by NM, 18-Apr-2014)

Ref Expression
Hypotheses lfladd.d D=ScalarW
lfladd.p ˙=+D
lfladd.v V=BaseW
lfladd.a +˙=+W
lfladd.f F=LFnlW
Assertion lfladd WLModGFXVYVGX+˙Y=GX˙GY

Proof

Step Hyp Ref Expression
1 lfladd.d D=ScalarW
2 lfladd.p ˙=+D
3 lfladd.v V=BaseW
4 lfladd.a +˙=+W
5 lfladd.f F=LFnlW
6 simp1 WLModGFXVYVWLMod
7 simp2 WLModGFXVYVGF
8 eqid BaseD=BaseD
9 eqid 1D=1D
10 1 8 9 lmod1cl WLMod1DBaseD
11 10 3ad2ant1 WLModGFXVYV1DBaseD
12 simp3l WLModGFXVYVXV
13 simp3r WLModGFXVYVYV
14 eqid W=W
15 eqid D=D
16 3 4 1 14 8 2 15 5 lfli WLModGF1DBaseDXVYVG1DWX+˙Y=1DDGX˙GY
17 6 7 11 12 13 16 syl113anc WLModGFXVYVG1DWX+˙Y=1DDGX˙GY
18 3 1 14 9 lmodvs1 WLModXV1DWX=X
19 6 12 18 syl2anc WLModGFXVYV1DWX=X
20 19 fvoveq1d WLModGFXVYVG1DWX+˙Y=GX+˙Y
21 1 lmodring WLModDRing
22 21 3ad2ant1 WLModGFXVYVDRing
23 1 8 3 5 lflcl WLModGFXVGXBaseD
24 23 3adant3r WLModGFXVYVGXBaseD
25 8 15 9 ringlidm DRingGXBaseD1DDGX=GX
26 22 24 25 syl2anc WLModGFXVYV1DDGX=GX
27 26 oveq1d WLModGFXVYV1DDGX˙GY=GX˙GY
28 17 20 27 3eqtr3d WLModGFXVYVGX+˙Y=GX˙GY