Step |
Hyp |
Ref |
Expression |
1 |
|
lflsub.d |
|
2 |
|
lflsub.m |
|
3 |
|
lflsub.v |
|
4 |
|
lflsub.a |
|
5 |
|
lflsub.f |
|
6 |
|
simp1 |
|
7 |
|
simp3l |
|
8 |
1
|
lmodring |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
ringgrp |
|
11 |
9 10
|
syl |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
ringidcl |
|
15 |
9 14
|
syl |
|
16 |
|
eqid |
|
17 |
12 16
|
grpinvcl |
|
18 |
11 15 17
|
syl2anc |
|
19 |
|
simp3r |
|
20 |
|
eqid |
|
21 |
3 1 20 12
|
lmodvscl |
|
22 |
6 18 19 21
|
syl3anc |
|
23 |
|
eqid |
|
24 |
3 23
|
lmodcom |
|
25 |
6 7 22 24
|
syl3anc |
|
26 |
25
|
fveq2d |
|
27 |
|
simp2 |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
3 23 1 20 12 28 29 5
|
lfli |
|
31 |
6 27 18 19 7 30
|
syl113anc |
|
32 |
1 12 3 5
|
lflcl |
|
33 |
32
|
3adant3l |
|
34 |
12 29 13 16 9 33
|
ringnegl |
|
35 |
34
|
oveq1d |
|
36 |
|
ringabl |
|
37 |
9 36
|
syl |
|
38 |
12 16
|
grpinvcl |
|
39 |
11 33 38
|
syl2anc |
|
40 |
1 12 3 5
|
lflcl |
|
41 |
40
|
3adant3r |
|
42 |
12 28
|
ablcom |
|
43 |
37 39 41 42
|
syl3anc |
|
44 |
35 43
|
eqtrd |
|
45 |
26 31 44
|
3eqtrd |
|
46 |
3 23 4 1 20 16 13
|
lmodvsubval2 |
|
47 |
6 7 19 46
|
syl3anc |
|
48 |
47
|
fveq2d |
|
49 |
12 28 16 2
|
grpsubval |
|
50 |
41 33 49
|
syl2anc |
|
51 |
45 48 50
|
3eqtr4d |
|