| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflsub.d |
|
| 2 |
|
lflsub.m |
|
| 3 |
|
lflsub.v |
|
| 4 |
|
lflsub.a |
|
| 5 |
|
lflsub.f |
|
| 6 |
|
simp1 |
|
| 7 |
|
simp3l |
|
| 8 |
1
|
lmodring |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
|
ringgrp |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
ringidcl |
|
| 15 |
9 14
|
syl |
|
| 16 |
|
eqid |
|
| 17 |
12 16
|
grpinvcl |
|
| 18 |
11 15 17
|
syl2anc |
|
| 19 |
|
simp3r |
|
| 20 |
|
eqid |
|
| 21 |
3 1 20 12
|
lmodvscl |
|
| 22 |
6 18 19 21
|
syl3anc |
|
| 23 |
|
eqid |
|
| 24 |
3 23
|
lmodcom |
|
| 25 |
6 7 22 24
|
syl3anc |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
simp2 |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
3 23 1 20 12 28 29 5
|
lfli |
|
| 31 |
6 27 18 19 7 30
|
syl113anc |
|
| 32 |
1 12 3 5
|
lflcl |
|
| 33 |
32
|
3adant3l |
|
| 34 |
12 29 13 16 9 33
|
ringnegl |
|
| 35 |
34
|
oveq1d |
|
| 36 |
|
ringabl |
|
| 37 |
9 36
|
syl |
|
| 38 |
12 16
|
grpinvcl |
|
| 39 |
11 33 38
|
syl2anc |
|
| 40 |
1 12 3 5
|
lflcl |
|
| 41 |
40
|
3adant3r |
|
| 42 |
12 28
|
ablcom |
|
| 43 |
37 39 41 42
|
syl3anc |
|
| 44 |
35 43
|
eqtrd |
|
| 45 |
26 31 44
|
3eqtrd |
|
| 46 |
3 23 4 1 20 16 13
|
lmodvsubval2 |
|
| 47 |
6 7 19 46
|
syl3anc |
|
| 48 |
47
|
fveq2d |
|
| 49 |
12 28 16 2
|
grpsubval |
|
| 50 |
41 33 49
|
syl2anc |
|
| 51 |
45 48 50
|
3eqtr4d |
|