Metamath Proof Explorer


Theorem lflmul

Description: Property of a linear functional. ( lnfnmuli analog.) (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lflmul.d D = Scalar W
lflmul.k K = Base D
lflmul.t × ˙ = D
lflmul.v V = Base W
lflmul.s · ˙ = W
lflmul.f F = LFnl W
Assertion lflmul W LMod G F R K X V G R · ˙ X = R × ˙ G X

Proof

Step Hyp Ref Expression
1 lflmul.d D = Scalar W
2 lflmul.k K = Base D
3 lflmul.t × ˙ = D
4 lflmul.v V = Base W
5 lflmul.s · ˙ = W
6 lflmul.f F = LFnl W
7 simp1 W LMod G F R K X V W LMod
8 simp2 W LMod G F R K X V G F
9 simp3l W LMod G F R K X V R K
10 simp3r W LMod G F R K X V X V
11 eqid 0 W = 0 W
12 4 11 lmod0vcl W LMod 0 W V
13 12 3ad2ant1 W LMod G F R K X V 0 W V
14 eqid + W = + W
15 eqid + D = + D
16 4 14 1 5 2 15 3 6 lfli W LMod G F R K X V 0 W V G R · ˙ X + W 0 W = R × ˙ G X + D G 0 W
17 7 8 9 10 13 16 syl113anc W LMod G F R K X V G R · ˙ X + W 0 W = R × ˙ G X + D G 0 W
18 4 1 5 2 lmodvscl W LMod R K X V R · ˙ X V
19 7 9 10 18 syl3anc W LMod G F R K X V R · ˙ X V
20 4 14 11 lmod0vrid W LMod R · ˙ X V R · ˙ X + W 0 W = R · ˙ X
21 7 19 20 syl2anc W LMod G F R K X V R · ˙ X + W 0 W = R · ˙ X
22 21 fveq2d W LMod G F R K X V G R · ˙ X + W 0 W = G R · ˙ X
23 eqid 0 D = 0 D
24 1 23 11 6 lfl0 W LMod G F G 0 W = 0 D
25 24 3adant3 W LMod G F R K X V G 0 W = 0 D
26 25 oveq2d W LMod G F R K X V R × ˙ G X + D G 0 W = R × ˙ G X + D 0 D
27 1 lmodfgrp W LMod D Grp
28 27 3ad2ant1 W LMod G F R K X V D Grp
29 1 2 4 6 lflcl W LMod G F X V G X K
30 29 3adant3l W LMod G F R K X V G X K
31 1 2 3 lmodmcl W LMod R K G X K R × ˙ G X K
32 7 9 30 31 syl3anc W LMod G F R K X V R × ˙ G X K
33 2 15 23 grprid D Grp R × ˙ G X K R × ˙ G X + D 0 D = R × ˙ G X
34 28 32 33 syl2anc W LMod G F R K X V R × ˙ G X + D 0 D = R × ˙ G X
35 26 34 eqtrd W LMod G F R K X V R × ˙ G X + D G 0 W = R × ˙ G X
36 17 22 35 3eqtr3d W LMod G F R K X V G R · ˙ X = R × ˙ G X