Metamath Proof Explorer


Theorem lflmul

Description: Property of a linear functional. ( lnfnmuli analog.) (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lflmul.d D=ScalarW
lflmul.k K=BaseD
lflmul.t ×˙=D
lflmul.v V=BaseW
lflmul.s ·˙=W
lflmul.f F=LFnlW
Assertion lflmul WLModGFRKXVGR·˙X=R×˙GX

Proof

Step Hyp Ref Expression
1 lflmul.d D=ScalarW
2 lflmul.k K=BaseD
3 lflmul.t ×˙=D
4 lflmul.v V=BaseW
5 lflmul.s ·˙=W
6 lflmul.f F=LFnlW
7 simp1 WLModGFRKXVWLMod
8 simp2 WLModGFRKXVGF
9 simp3l WLModGFRKXVRK
10 simp3r WLModGFRKXVXV
11 eqid 0W=0W
12 4 11 lmod0vcl WLMod0WV
13 12 3ad2ant1 WLModGFRKXV0WV
14 eqid +W=+W
15 eqid +D=+D
16 4 14 1 5 2 15 3 6 lfli WLModGFRKXV0WVGR·˙X+W0W=R×˙GX+DG0W
17 7 8 9 10 13 16 syl113anc WLModGFRKXVGR·˙X+W0W=R×˙GX+DG0W
18 4 1 5 2 lmodvscl WLModRKXVR·˙XV
19 7 9 10 18 syl3anc WLModGFRKXVR·˙XV
20 4 14 11 lmod0vrid WLModR·˙XVR·˙X+W0W=R·˙X
21 7 19 20 syl2anc WLModGFRKXVR·˙X+W0W=R·˙X
22 21 fveq2d WLModGFRKXVGR·˙X+W0W=GR·˙X
23 eqid 0D=0D
24 1 23 11 6 lfl0 WLModGFG0W=0D
25 24 3adant3 WLModGFRKXVG0W=0D
26 25 oveq2d WLModGFRKXVR×˙GX+DG0W=R×˙GX+D0D
27 1 lmodfgrp WLModDGrp
28 27 3ad2ant1 WLModGFRKXVDGrp
29 1 2 4 6 lflcl WLModGFXVGXK
30 29 3adant3l WLModGFRKXVGXK
31 1 2 3 lmodmcl WLModRKGXKR×˙GXK
32 7 9 30 31 syl3anc WLModGFRKXVR×˙GXK
33 2 15 23 grprid DGrpR×˙GXKR×˙GX+D0D=R×˙GX
34 28 32 33 syl2anc WLModGFRKXVR×˙GX+D0D=R×˙GX
35 26 34 eqtrd WLModGFRKXVR×˙GX+DG0W=R×˙GX
36 17 22 35 3eqtr3d WLModGFRKXVGR·˙X=R×˙GX