Step |
Hyp |
Ref |
Expression |
1 |
|
lflmul.d |
|
2 |
|
lflmul.k |
|
3 |
|
lflmul.t |
|
4 |
|
lflmul.v |
|
5 |
|
lflmul.s |
|
6 |
|
lflmul.f |
|
7 |
|
simp1 |
|
8 |
|
simp2 |
|
9 |
|
simp3l |
|
10 |
|
simp3r |
|
11 |
|
eqid |
|
12 |
4 11
|
lmod0vcl |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
4 14 1 5 2 15 3 6
|
lfli |
|
17 |
7 8 9 10 13 16
|
syl113anc |
|
18 |
4 1 5 2
|
lmodvscl |
|
19 |
7 9 10 18
|
syl3anc |
|
20 |
4 14 11
|
lmod0vrid |
|
21 |
7 19 20
|
syl2anc |
|
22 |
21
|
fveq2d |
|
23 |
|
eqid |
|
24 |
1 23 11 6
|
lfl0 |
|
25 |
24
|
3adant3 |
|
26 |
25
|
oveq2d |
|
27 |
1
|
lmodfgrp |
|
28 |
27
|
3ad2ant1 |
|
29 |
1 2 4 6
|
lflcl |
|
30 |
29
|
3adant3l |
|
31 |
1 2 3
|
lmodmcl |
|
32 |
7 9 30 31
|
syl3anc |
|
33 |
2 15 23
|
grprid |
|
34 |
28 32 33
|
syl2anc |
|
35 |
26 34
|
eqtrd |
|
36 |
17 22 35
|
3eqtr3d |
|