Step |
Hyp |
Ref |
Expression |
1 |
|
lfl0.d |
|
2 |
|
lfl0.o |
|
3 |
|
lfl0.z |
|
4 |
|
lfl0.f |
|
5 |
|
simpl |
|
6 |
|
simpr |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 7 8
|
lmod1cl |
|
10 |
9
|
adantr |
|
11 |
|
eqid |
|
12 |
11 3
|
lmod0vcl |
|
13 |
12
|
adantr |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
11 14 1 15 7 16 17 4
|
lfli |
|
19 |
5 6 10 13 13 18
|
syl113anc |
|
20 |
11 1 15 7
|
lmodvscl |
|
21 |
5 10 13 20
|
syl3anc |
|
22 |
11 14 3
|
lmod0vrid |
|
23 |
21 22
|
syldan |
|
24 |
11 1 15 8
|
lmodvs1 |
|
25 |
13 24
|
syldan |
|
26 |
23 25
|
eqtrd |
|
27 |
26
|
fveq2d |
|
28 |
1
|
lmodring |
|
29 |
28
|
adantr |
|
30 |
1 7 11 4
|
lflcl |
|
31 |
13 30
|
mpd3an3 |
|
32 |
7 17 8
|
ringlidm |
|
33 |
29 31 32
|
syl2anc |
|
34 |
33
|
oveq1d |
|
35 |
19 27 34
|
3eqtr3d |
|
36 |
35
|
oveq1d |
|
37 |
|
ringgrp |
|
38 |
29 37
|
syl |
|
39 |
|
eqid |
|
40 |
7 2 39
|
grpsubid |
|
41 |
38 31 40
|
syl2anc |
|
42 |
7 16 39
|
grppncan |
|
43 |
38 31 31 42
|
syl3anc |
|
44 |
36 41 43
|
3eqtr3rd |
|