| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl0.d |
|
| 2 |
|
lfl0.o |
|
| 3 |
|
lfl0.z |
|
| 4 |
|
lfl0.f |
|
| 5 |
|
simpl |
|
| 6 |
|
simpr |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
1 7 8
|
lmod1cl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
eqid |
|
| 12 |
11 3
|
lmod0vcl |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
11 14 1 15 7 16 17 4
|
lfli |
|
| 19 |
5 6 10 13 13 18
|
syl113anc |
|
| 20 |
11 1 15 7
|
lmodvscl |
|
| 21 |
5 10 13 20
|
syl3anc |
|
| 22 |
11 14 3
|
lmod0vrid |
|
| 23 |
21 22
|
syldan |
|
| 24 |
11 1 15 8
|
lmodvs1 |
|
| 25 |
13 24
|
syldan |
|
| 26 |
23 25
|
eqtrd |
|
| 27 |
26
|
fveq2d |
|
| 28 |
1
|
lmodring |
|
| 29 |
28
|
adantr |
|
| 30 |
1 7 11 4
|
lflcl |
|
| 31 |
13 30
|
mpd3an3 |
|
| 32 |
7 17 8
|
ringlidm |
|
| 33 |
29 31 32
|
syl2anc |
|
| 34 |
33
|
oveq1d |
|
| 35 |
19 27 34
|
3eqtr3d |
|
| 36 |
35
|
oveq1d |
|
| 37 |
|
ringgrp |
|
| 38 |
29 37
|
syl |
|
| 39 |
|
eqid |
|
| 40 |
7 2 39
|
grpsubid |
|
| 41 |
38 31 40
|
syl2anc |
|
| 42 |
7 16 39
|
grppncan |
|
| 43 |
38 31 31 42
|
syl3anc |
|
| 44 |
36 41 43
|
3eqtr3rd |
|