Metamath Proof Explorer


Theorem lfl0

Description: A linear functional is zero at the zero vector. ( lnfn0i analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lfl0.d D=ScalarW
lfl0.o 0˙=0D
lfl0.z Z=0W
lfl0.f F=LFnlW
Assertion lfl0 WLModGFGZ=0˙

Proof

Step Hyp Ref Expression
1 lfl0.d D=ScalarW
2 lfl0.o 0˙=0D
3 lfl0.z Z=0W
4 lfl0.f F=LFnlW
5 simpl WLModGFWLMod
6 simpr WLModGFGF
7 eqid BaseD=BaseD
8 eqid 1D=1D
9 1 7 8 lmod1cl WLMod1DBaseD
10 9 adantr WLModGF1DBaseD
11 eqid BaseW=BaseW
12 11 3 lmod0vcl WLModZBaseW
13 12 adantr WLModGFZBaseW
14 eqid +W=+W
15 eqid W=W
16 eqid +D=+D
17 eqid D=D
18 11 14 1 15 7 16 17 4 lfli WLModGF1DBaseDZBaseWZBaseWG1DWZ+WZ=1DDGZ+DGZ
19 5 6 10 13 13 18 syl113anc WLModGFG1DWZ+WZ=1DDGZ+DGZ
20 11 1 15 7 lmodvscl WLMod1DBaseDZBaseW1DWZBaseW
21 5 10 13 20 syl3anc WLModGF1DWZBaseW
22 11 14 3 lmod0vrid WLMod1DWZBaseW1DWZ+WZ=1DWZ
23 21 22 syldan WLModGF1DWZ+WZ=1DWZ
24 11 1 15 8 lmodvs1 WLModZBaseW1DWZ=Z
25 13 24 syldan WLModGF1DWZ=Z
26 23 25 eqtrd WLModGF1DWZ+WZ=Z
27 26 fveq2d WLModGFG1DWZ+WZ=GZ
28 1 lmodring WLModDRing
29 28 adantr WLModGFDRing
30 1 7 11 4 lflcl WLModGFZBaseWGZBaseD
31 13 30 mpd3an3 WLModGFGZBaseD
32 7 17 8 ringlidm DRingGZBaseD1DDGZ=GZ
33 29 31 32 syl2anc WLModGF1DDGZ=GZ
34 33 oveq1d WLModGF1DDGZ+DGZ=GZ+DGZ
35 19 27 34 3eqtr3d WLModGFGZ=GZ+DGZ
36 35 oveq1d WLModGFGZ-DGZ=GZ+DGZ-DGZ
37 ringgrp DRingDGrp
38 29 37 syl WLModGFDGrp
39 eqid -D=-D
40 7 2 39 grpsubid DGrpGZBaseDGZ-DGZ=0˙
41 38 31 40 syl2anc WLModGFGZ-DGZ=0˙
42 7 16 39 grppncan DGrpGZBaseDGZBaseDGZ+DGZ-DGZ=GZ
43 38 31 31 42 syl3anc WLModGFGZ+DGZ-DGZ=GZ
44 36 41 43 3eqtr3rd WLModGFGZ=0˙