Metamath Proof Explorer


Theorem lfl0

Description: A linear functional is zero at the zero vector. ( lnfn0i analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lfl0.d D = Scalar W
lfl0.o 0 ˙ = 0 D
lfl0.z Z = 0 W
lfl0.f F = LFnl W
Assertion lfl0 W LMod G F G Z = 0 ˙

Proof

Step Hyp Ref Expression
1 lfl0.d D = Scalar W
2 lfl0.o 0 ˙ = 0 D
3 lfl0.z Z = 0 W
4 lfl0.f F = LFnl W
5 simpl W LMod G F W LMod
6 simpr W LMod G F G F
7 eqid Base D = Base D
8 eqid 1 D = 1 D
9 1 7 8 lmod1cl W LMod 1 D Base D
10 9 adantr W LMod G F 1 D Base D
11 eqid Base W = Base W
12 11 3 lmod0vcl W LMod Z Base W
13 12 adantr W LMod G F Z Base W
14 eqid + W = + W
15 eqid W = W
16 eqid + D = + D
17 eqid D = D
18 11 14 1 15 7 16 17 4 lfli W LMod G F 1 D Base D Z Base W Z Base W G 1 D W Z + W Z = 1 D D G Z + D G Z
19 5 6 10 13 13 18 syl113anc W LMod G F G 1 D W Z + W Z = 1 D D G Z + D G Z
20 11 1 15 7 lmodvscl W LMod 1 D Base D Z Base W 1 D W Z Base W
21 5 10 13 20 syl3anc W LMod G F 1 D W Z Base W
22 11 14 3 lmod0vrid W LMod 1 D W Z Base W 1 D W Z + W Z = 1 D W Z
23 21 22 syldan W LMod G F 1 D W Z + W Z = 1 D W Z
24 11 1 15 8 lmodvs1 W LMod Z Base W 1 D W Z = Z
25 13 24 syldan W LMod G F 1 D W Z = Z
26 23 25 eqtrd W LMod G F 1 D W Z + W Z = Z
27 26 fveq2d W LMod G F G 1 D W Z + W Z = G Z
28 1 lmodring W LMod D Ring
29 28 adantr W LMod G F D Ring
30 1 7 11 4 lflcl W LMod G F Z Base W G Z Base D
31 13 30 mpd3an3 W LMod G F G Z Base D
32 7 17 8 ringlidm D Ring G Z Base D 1 D D G Z = G Z
33 29 31 32 syl2anc W LMod G F 1 D D G Z = G Z
34 33 oveq1d W LMod G F 1 D D G Z + D G Z = G Z + D G Z
35 19 27 34 3eqtr3d W LMod G F G Z = G Z + D G Z
36 35 oveq1d W LMod G F G Z - D G Z = G Z + D G Z - D G Z
37 ringgrp D Ring D Grp
38 29 37 syl W LMod G F D Grp
39 eqid - D = - D
40 7 2 39 grpsubid D Grp G Z Base D G Z - D G Z = 0 ˙
41 38 31 40 syl2anc W LMod G F G Z - D G Z = 0 ˙
42 7 16 39 grppncan D Grp G Z Base D G Z Base D G Z + D G Z - D G Z = G Z
43 38 31 31 42 syl3anc W LMod G F G Z + D G Z - D G Z = G Z
44 36 41 43 3eqtr3rd W LMod G F G Z = 0 ˙