Step |
Hyp |
Ref |
Expression |
1 |
|
lfl0.d |
|- D = ( Scalar ` W ) |
2 |
|
lfl0.o |
|- .0. = ( 0g ` D ) |
3 |
|
lfl0.z |
|- Z = ( 0g ` W ) |
4 |
|
lfl0.f |
|- F = ( LFnl ` W ) |
5 |
|
simpl |
|- ( ( W e. LMod /\ G e. F ) -> W e. LMod ) |
6 |
|
simpr |
|- ( ( W e. LMod /\ G e. F ) -> G e. F ) |
7 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
8 |
|
eqid |
|- ( 1r ` D ) = ( 1r ` D ) |
9 |
1 7 8
|
lmod1cl |
|- ( W e. LMod -> ( 1r ` D ) e. ( Base ` D ) ) |
10 |
9
|
adantr |
|- ( ( W e. LMod /\ G e. F ) -> ( 1r ` D ) e. ( Base ` D ) ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
11 3
|
lmod0vcl |
|- ( W e. LMod -> Z e. ( Base ` W ) ) |
13 |
12
|
adantr |
|- ( ( W e. LMod /\ G e. F ) -> Z e. ( Base ` W ) ) |
14 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
15 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
16 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
17 |
|
eqid |
|- ( .r ` D ) = ( .r ` D ) |
18 |
11 14 1 15 7 16 17 4
|
lfli |
|- ( ( W e. LMod /\ G e. F /\ ( ( 1r ` D ) e. ( Base ` D ) /\ Z e. ( Base ` W ) /\ Z e. ( Base ` W ) ) ) -> ( G ` ( ( ( 1r ` D ) ( .s ` W ) Z ) ( +g ` W ) Z ) ) = ( ( ( 1r ` D ) ( .r ` D ) ( G ` Z ) ) ( +g ` D ) ( G ` Z ) ) ) |
19 |
5 6 10 13 13 18
|
syl113anc |
|- ( ( W e. LMod /\ G e. F ) -> ( G ` ( ( ( 1r ` D ) ( .s ` W ) Z ) ( +g ` W ) Z ) ) = ( ( ( 1r ` D ) ( .r ` D ) ( G ` Z ) ) ( +g ` D ) ( G ` Z ) ) ) |
20 |
11 1 15 7
|
lmodvscl |
|- ( ( W e. LMod /\ ( 1r ` D ) e. ( Base ` D ) /\ Z e. ( Base ` W ) ) -> ( ( 1r ` D ) ( .s ` W ) Z ) e. ( Base ` W ) ) |
21 |
5 10 13 20
|
syl3anc |
|- ( ( W e. LMod /\ G e. F ) -> ( ( 1r ` D ) ( .s ` W ) Z ) e. ( Base ` W ) ) |
22 |
11 14 3
|
lmod0vrid |
|- ( ( W e. LMod /\ ( ( 1r ` D ) ( .s ` W ) Z ) e. ( Base ` W ) ) -> ( ( ( 1r ` D ) ( .s ` W ) Z ) ( +g ` W ) Z ) = ( ( 1r ` D ) ( .s ` W ) Z ) ) |
23 |
21 22
|
syldan |
|- ( ( W e. LMod /\ G e. F ) -> ( ( ( 1r ` D ) ( .s ` W ) Z ) ( +g ` W ) Z ) = ( ( 1r ` D ) ( .s ` W ) Z ) ) |
24 |
11 1 15 8
|
lmodvs1 |
|- ( ( W e. LMod /\ Z e. ( Base ` W ) ) -> ( ( 1r ` D ) ( .s ` W ) Z ) = Z ) |
25 |
13 24
|
syldan |
|- ( ( W e. LMod /\ G e. F ) -> ( ( 1r ` D ) ( .s ` W ) Z ) = Z ) |
26 |
23 25
|
eqtrd |
|- ( ( W e. LMod /\ G e. F ) -> ( ( ( 1r ` D ) ( .s ` W ) Z ) ( +g ` W ) Z ) = Z ) |
27 |
26
|
fveq2d |
|- ( ( W e. LMod /\ G e. F ) -> ( G ` ( ( ( 1r ` D ) ( .s ` W ) Z ) ( +g ` W ) Z ) ) = ( G ` Z ) ) |
28 |
1
|
lmodring |
|- ( W e. LMod -> D e. Ring ) |
29 |
28
|
adantr |
|- ( ( W e. LMod /\ G e. F ) -> D e. Ring ) |
30 |
1 7 11 4
|
lflcl |
|- ( ( W e. LMod /\ G e. F /\ Z e. ( Base ` W ) ) -> ( G ` Z ) e. ( Base ` D ) ) |
31 |
13 30
|
mpd3an3 |
|- ( ( W e. LMod /\ G e. F ) -> ( G ` Z ) e. ( Base ` D ) ) |
32 |
7 17 8
|
ringlidm |
|- ( ( D e. Ring /\ ( G ` Z ) e. ( Base ` D ) ) -> ( ( 1r ` D ) ( .r ` D ) ( G ` Z ) ) = ( G ` Z ) ) |
33 |
29 31 32
|
syl2anc |
|- ( ( W e. LMod /\ G e. F ) -> ( ( 1r ` D ) ( .r ` D ) ( G ` Z ) ) = ( G ` Z ) ) |
34 |
33
|
oveq1d |
|- ( ( W e. LMod /\ G e. F ) -> ( ( ( 1r ` D ) ( .r ` D ) ( G ` Z ) ) ( +g ` D ) ( G ` Z ) ) = ( ( G ` Z ) ( +g ` D ) ( G ` Z ) ) ) |
35 |
19 27 34
|
3eqtr3d |
|- ( ( W e. LMod /\ G e. F ) -> ( G ` Z ) = ( ( G ` Z ) ( +g ` D ) ( G ` Z ) ) ) |
36 |
35
|
oveq1d |
|- ( ( W e. LMod /\ G e. F ) -> ( ( G ` Z ) ( -g ` D ) ( G ` Z ) ) = ( ( ( G ` Z ) ( +g ` D ) ( G ` Z ) ) ( -g ` D ) ( G ` Z ) ) ) |
37 |
|
ringgrp |
|- ( D e. Ring -> D e. Grp ) |
38 |
29 37
|
syl |
|- ( ( W e. LMod /\ G e. F ) -> D e. Grp ) |
39 |
|
eqid |
|- ( -g ` D ) = ( -g ` D ) |
40 |
7 2 39
|
grpsubid |
|- ( ( D e. Grp /\ ( G ` Z ) e. ( Base ` D ) ) -> ( ( G ` Z ) ( -g ` D ) ( G ` Z ) ) = .0. ) |
41 |
38 31 40
|
syl2anc |
|- ( ( W e. LMod /\ G e. F ) -> ( ( G ` Z ) ( -g ` D ) ( G ` Z ) ) = .0. ) |
42 |
7 16 39
|
grppncan |
|- ( ( D e. Grp /\ ( G ` Z ) e. ( Base ` D ) /\ ( G ` Z ) e. ( Base ` D ) ) -> ( ( ( G ` Z ) ( +g ` D ) ( G ` Z ) ) ( -g ` D ) ( G ` Z ) ) = ( G ` Z ) ) |
43 |
38 31 31 42
|
syl3anc |
|- ( ( W e. LMod /\ G e. F ) -> ( ( ( G ` Z ) ( +g ` D ) ( G ` Z ) ) ( -g ` D ) ( G ` Z ) ) = ( G ` Z ) ) |
44 |
36 41 43
|
3eqtr3rd |
|- ( ( W e. LMod /\ G e. F ) -> ( G ` Z ) = .0. ) |