Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lflf.d | |- D = ( Scalar ` W ) |
|
| lflf.k | |- K = ( Base ` D ) |
||
| lflf.v | |- V = ( Base ` W ) |
||
| lflf.f | |- F = ( LFnl ` W ) |
||
| Assertion | lflcl | |- ( ( W e. Y /\ G e. F /\ X e. V ) -> ( G ` X ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.d | |- D = ( Scalar ` W ) |
|
| 2 | lflf.k | |- K = ( Base ` D ) |
|
| 3 | lflf.v | |- V = ( Base ` W ) |
|
| 4 | lflf.f | |- F = ( LFnl ` W ) |
|
| 5 | 1 2 3 4 | lflf | |- ( ( W e. Y /\ G e. F ) -> G : V --> K ) |
| 6 | 5 | 3adant3 | |- ( ( W e. Y /\ G e. F /\ X e. V ) -> G : V --> K ) |
| 7 | simp3 | |- ( ( W e. Y /\ G e. F /\ X e. V ) -> X e. V ) |
|
| 8 | 6 7 | ffvelcdmd | |- ( ( W e. Y /\ G e. F /\ X e. V ) -> ( G ` X ) e. K ) |