Step |
Hyp |
Ref |
Expression |
1 |
|
lfl0f.d |
|
2 |
|
lfl0f.o |
|
3 |
|
lfl0f.v |
|
4 |
|
lfl0f.f |
|
5 |
2
|
fvexi |
|
6 |
5
|
fconst |
|
7 |
|
eqid |
|
8 |
1 7 2
|
lmod0cl |
|
9 |
8
|
snssd |
|
10 |
|
fss |
|
11 |
6 9 10
|
sylancr |
|
12 |
1
|
lmodring |
|
13 |
12
|
ad2antrr |
|
14 |
|
simplrl |
|
15 |
|
eqid |
|
16 |
7 15 2
|
ringrz |
|
17 |
13 14 16
|
syl2anc |
|
18 |
17
|
oveq1d |
|
19 |
|
ringgrp |
|
20 |
13 19
|
syl |
|
21 |
7 2
|
grpidcl |
|
22 |
|
eqid |
|
23 |
7 22 2
|
grplid |
|
24 |
20 21 23
|
syl2anc2 |
|
25 |
18 24
|
eqtrd |
|
26 |
|
simplrr |
|
27 |
5
|
fvconst2 |
|
28 |
26 27
|
syl |
|
29 |
28
|
oveq2d |
|
30 |
5
|
fvconst2 |
|
31 |
30
|
adantl |
|
32 |
29 31
|
oveq12d |
|
33 |
|
simpll |
|
34 |
|
eqid |
|
35 |
3 1 34 7
|
lmodvscl |
|
36 |
33 14 26 35
|
syl3anc |
|
37 |
|
simpr |
|
38 |
|
eqid |
|
39 |
3 38
|
lmodvacl |
|
40 |
33 36 37 39
|
syl3anc |
|
41 |
5
|
fvconst2 |
|
42 |
40 41
|
syl |
|
43 |
25 32 42
|
3eqtr4rd |
|
44 |
43
|
ralrimiva |
|
45 |
44
|
ralrimivva |
|
46 |
3 38 1 34 7 22 15 4
|
islfl |
|
47 |
11 45 46
|
mpbir2and |
|