Metamath Proof Explorer


Theorem lfl1

Description: A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lfl1.d D = Scalar W
lfl1.o 0 ˙ = 0 D
lfl1.u 1 ˙ = 1 D
lfl1.v V = Base W
lfl1.f F = LFnl W
Assertion lfl1 W LVec G F G V × 0 ˙ x V G x = 1 ˙

Proof

Step Hyp Ref Expression
1 lfl1.d D = Scalar W
2 lfl1.o 0 ˙ = 0 D
3 lfl1.u 1 ˙ = 1 D
4 lfl1.v V = Base W
5 lfl1.f F = LFnl W
6 nne ¬ G z 0 ˙ G z = 0 ˙
7 6 ralbii z V ¬ G z 0 ˙ z V G z = 0 ˙
8 eqid Base D = Base D
9 1 8 4 5 lflf W LVec G F G : V Base D
10 9 ffnd W LVec G F G Fn V
11 fconstfv G : V 0 ˙ G Fn V z V G z = 0 ˙
12 11 simplbi2 G Fn V z V G z = 0 ˙ G : V 0 ˙
13 10 12 syl W LVec G F z V G z = 0 ˙ G : V 0 ˙
14 2 fvexi 0 ˙ V
15 14 fconst2 G : V 0 ˙ G = V × 0 ˙
16 13 15 syl6ib W LVec G F z V G z = 0 ˙ G = V × 0 ˙
17 7 16 syl5bi W LVec G F z V ¬ G z 0 ˙ G = V × 0 ˙
18 17 necon3ad W LVec G F G V × 0 ˙ ¬ z V ¬ G z 0 ˙
19 dfrex2 z V G z 0 ˙ ¬ z V ¬ G z 0 ˙
20 18 19 syl6ibr W LVec G F G V × 0 ˙ z V G z 0 ˙
21 20 3impia W LVec G F G V × 0 ˙ z V G z 0 ˙
22 simp1l W LVec G F z V G z 0 ˙ W LVec
23 lveclmod W LVec W LMod
24 22 23 syl W LVec G F z V G z 0 ˙ W LMod
25 1 lvecdrng W LVec D DivRing
26 22 25 syl W LVec G F z V G z 0 ˙ D DivRing
27 simp1r W LVec G F z V G z 0 ˙ G F
28 simp2 W LVec G F z V G z 0 ˙ z V
29 1 8 4 5 lflcl W LVec G F z V G z Base D
30 22 27 28 29 syl3anc W LVec G F z V G z 0 ˙ G z Base D
31 simp3 W LVec G F z V G z 0 ˙ G z 0 ˙
32 eqid inv r D = inv r D
33 8 2 32 drnginvrcl D DivRing G z Base D G z 0 ˙ inv r D G z Base D
34 26 30 31 33 syl3anc W LVec G F z V G z 0 ˙ inv r D G z Base D
35 eqid W = W
36 4 1 35 8 lmodvscl W LMod inv r D G z Base D z V inv r D G z W z V
37 24 34 28 36 syl3anc W LVec G F z V G z 0 ˙ inv r D G z W z V
38 eqid D = D
39 1 8 38 4 35 5 lflmul W LMod G F inv r D G z Base D z V G inv r D G z W z = inv r D G z D G z
40 24 27 34 28 39 syl112anc W LVec G F z V G z 0 ˙ G inv r D G z W z = inv r D G z D G z
41 8 2 38 3 32 drnginvrl D DivRing G z Base D G z 0 ˙ inv r D G z D G z = 1 ˙
42 26 30 31 41 syl3anc W LVec G F z V G z 0 ˙ inv r D G z D G z = 1 ˙
43 40 42 eqtrd W LVec G F z V G z 0 ˙ G inv r D G z W z = 1 ˙
44 fveqeq2 x = inv r D G z W z G x = 1 ˙ G inv r D G z W z = 1 ˙
45 44 rspcev inv r D G z W z V G inv r D G z W z = 1 ˙ x V G x = 1 ˙
46 37 43 45 syl2anc W LVec G F z V G z 0 ˙ x V G x = 1 ˙
47 46 rexlimdv3a W LVec G F z V G z 0 ˙ x V G x = 1 ˙
48 47 3adant3 W LVec G F G V × 0 ˙ z V G z 0 ˙ x V G x = 1 ˙
49 21 48 mpd W LVec G F G V × 0 ˙ x V G x = 1 ˙