Step |
Hyp |
Ref |
Expression |
1 |
|
lfl1.d |
|
2 |
|
lfl1.o |
|
3 |
|
lfl1.u |
|
4 |
|
lfl1.v |
|
5 |
|
lfl1.f |
|
6 |
|
nne |
|
7 |
6
|
ralbii |
|
8 |
|
eqid |
|
9 |
1 8 4 5
|
lflf |
|
10 |
9
|
ffnd |
|
11 |
|
fconstfv |
|
12 |
11
|
simplbi2 |
|
13 |
10 12
|
syl |
|
14 |
2
|
fvexi |
|
15 |
14
|
fconst2 |
|
16 |
13 15
|
syl6ib |
|
17 |
7 16
|
syl5bi |
|
18 |
17
|
necon3ad |
|
19 |
|
dfrex2 |
|
20 |
18 19
|
syl6ibr |
|
21 |
20
|
3impia |
|
22 |
|
simp1l |
|
23 |
|
lveclmod |
|
24 |
22 23
|
syl |
|
25 |
1
|
lvecdrng |
|
26 |
22 25
|
syl |
|
27 |
|
simp1r |
|
28 |
|
simp2 |
|
29 |
1 8 4 5
|
lflcl |
|
30 |
22 27 28 29
|
syl3anc |
|
31 |
|
simp3 |
|
32 |
|
eqid |
|
33 |
8 2 32
|
drnginvrcl |
|
34 |
26 30 31 33
|
syl3anc |
|
35 |
|
eqid |
|
36 |
4 1 35 8
|
lmodvscl |
|
37 |
24 34 28 36
|
syl3anc |
|
38 |
|
eqid |
|
39 |
1 8 38 4 35 5
|
lflmul |
|
40 |
24 27 34 28 39
|
syl112anc |
|
41 |
8 2 38 3 32
|
drnginvrl |
|
42 |
26 30 31 41
|
syl3anc |
|
43 |
40 42
|
eqtrd |
|
44 |
|
fveqeq2 |
|
45 |
44
|
rspcev |
|
46 |
37 43 45
|
syl2anc |
|
47 |
46
|
rexlimdv3a |
|
48 |
47
|
3adant3 |
|
49 |
21 48
|
mpd |
|