Metamath Proof Explorer


Theorem lnfnmuli

Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 T LinFn
Assertion lnfnmuli A B T A B = A T B

Proof

Step Hyp Ref Expression
1 lnfnl.1 T LinFn
2 ax-hv0cl 0
3 1 lnfnli A B 0 T A B + 0 = A T B + T 0
4 2 3 mp3an3 A B T A B + 0 = A T B + T 0
5 hvmulcl A B A B
6 ax-hvaddid A B A B + 0 = A B
7 5 6 syl A B A B + 0 = A B
8 7 fveq2d A B T A B + 0 = T A B
9 1 lnfn0i T 0 = 0
10 9 oveq2i A T B + T 0 = A T B + 0
11 1 lnfnfi T :
12 11 ffvelrni B T B
13 mulcl A T B A T B
14 12 13 sylan2 A B A T B
15 14 addid1d A B A T B + 0 = A T B
16 10 15 syl5eq A B A T B + T 0 = A T B
17 4 8 16 3eqtr3d A B T A B = A T B