Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
3 |
1
|
lnfnli |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
4 |
2 3
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
5 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
6 |
|
ax-hvaddid |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) |
9 |
1
|
lnfn0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
10 |
9
|
oveq2i |
⊢ ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + 0 ) |
11 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
12 |
11
|
ffvelrni |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) |
13 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ) |
14 |
12 13
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ) |
15 |
14
|
addid1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + 0 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
16 |
10 15
|
syl5eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
17 |
4 8 16
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |