| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnfnl.1 |
⊢ 𝑇 ∈ LinFn |
| 2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 3 |
1
|
lnfnli |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
| 4 |
2 3
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
| 5 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
| 6 |
|
ax-hvaddid |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) |
| 9 |
1
|
lnfn0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| 10 |
9
|
oveq2i |
⊢ ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + 0 ) |
| 11 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
| 12 |
11
|
ffvelcdmi |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) |
| 13 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ) |
| 14 |
12 13
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ) |
| 15 |
14
|
addridd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + 0 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 16 |
10 15
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 17 |
4 8 16
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |