Metamath Proof Explorer


Theorem lmodvsubval2

Description: Value of vector subtraction in terms of addition. ( hvsubval analog.) (Contributed by NM, 31-Mar-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvsubval2.v V = Base W
lmodvsubval2.p + ˙ = + W
lmodvsubval2.m - ˙ = - W
lmodvsubval2.f F = Scalar W
lmodvsubval2.s · ˙ = W
lmodvsubval2.n N = inv g F
lmodvsubval2.u 1 ˙ = 1 F
Assertion lmodvsubval2 W LMod A V B V A - ˙ B = A + ˙ N 1 ˙ · ˙ B

Proof

Step Hyp Ref Expression
1 lmodvsubval2.v V = Base W
2 lmodvsubval2.p + ˙ = + W
3 lmodvsubval2.m - ˙ = - W
4 lmodvsubval2.f F = Scalar W
5 lmodvsubval2.s · ˙ = W
6 lmodvsubval2.n N = inv g F
7 lmodvsubval2.u 1 ˙ = 1 F
8 eqid inv g W = inv g W
9 1 2 8 3 grpsubval A V B V A - ˙ B = A + ˙ inv g W B
10 9 3adant1 W LMod A V B V A - ˙ B = A + ˙ inv g W B
11 1 8 4 5 7 6 lmodvneg1 W LMod B V N 1 ˙ · ˙ B = inv g W B
12 11 3adant2 W LMod A V B V N 1 ˙ · ˙ B = inv g W B
13 12 oveq2d W LMod A V B V A + ˙ N 1 ˙ · ˙ B = A + ˙ inv g W B
14 10 13 eqtr4d W LMod A V B V A - ˙ B = A + ˙ N 1 ˙ · ˙ B