Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvsubval2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodvsubval2.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lmodvsubval2.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
lmodvsubval2.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
lmodvsubval2.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lmodvsubval2.n |
⊢ 𝑁 = ( invg ‘ 𝐹 ) |
7 |
|
lmodvsubval2.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
8 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
9 |
1 2 8 3
|
grpsubval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
11 |
1 8 4 5 7 6
|
lmodvneg1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 1 ) · 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 1 ) · 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( ( 𝑁 ‘ 1 ) · 𝐵 ) ) = ( 𝐴 + ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
14 |
10 13
|
eqtr4d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( 𝑁 ‘ 1 ) · 𝐵 ) ) ) |