Metamath Proof Explorer


Theorem lmodvsubval2

Description: Value of vector subtraction in terms of addition. ( hvsubval analog.) (Contributed by NM, 31-Mar-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvsubval2.v 𝑉 = ( Base ‘ 𝑊 )
lmodvsubval2.p + = ( +g𝑊 )
lmodvsubval2.m = ( -g𝑊 )
lmodvsubval2.f 𝐹 = ( Scalar ‘ 𝑊 )
lmodvsubval2.s · = ( ·𝑠𝑊 )
lmodvsubval2.n 𝑁 = ( invg𝐹 )
lmodvsubval2.u 1 = ( 1r𝐹 )
Assertion lmodvsubval2 ( ( 𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( ( 𝑁1 ) · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 lmodvsubval2.v 𝑉 = ( Base ‘ 𝑊 )
2 lmodvsubval2.p + = ( +g𝑊 )
3 lmodvsubval2.m = ( -g𝑊 )
4 lmodvsubval2.f 𝐹 = ( Scalar ‘ 𝑊 )
5 lmodvsubval2.s · = ( ·𝑠𝑊 )
6 lmodvsubval2.n 𝑁 = ( invg𝐹 )
7 lmodvsubval2.u 1 = ( 1r𝐹 )
8 eqid ( invg𝑊 ) = ( invg𝑊 )
9 1 2 8 3 grpsubval ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( ( invg𝑊 ) ‘ 𝐵 ) ) )
10 9 3adant1 ( ( 𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( ( invg𝑊 ) ‘ 𝐵 ) ) )
11 1 8 4 5 7 6 lmodvneg1 ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉 ) → ( ( 𝑁1 ) · 𝐵 ) = ( ( invg𝑊 ) ‘ 𝐵 ) )
12 11 3adant2 ( ( 𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉 ) → ( ( 𝑁1 ) · 𝐵 ) = ( ( invg𝑊 ) ‘ 𝐵 ) )
13 12 oveq2d ( ( 𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 + ( ( 𝑁1 ) · 𝐵 ) ) = ( 𝐴 + ( ( invg𝑊 ) ‘ 𝐵 ) ) )
14 10 13 eqtr4d ( ( 𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( ( 𝑁1 ) · 𝐵 ) ) )