| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvsubval2.v |
|- V = ( Base ` W ) |
| 2 |
|
lmodvsubval2.p |
|- .+ = ( +g ` W ) |
| 3 |
|
lmodvsubval2.m |
|- .- = ( -g ` W ) |
| 4 |
|
lmodvsubval2.f |
|- F = ( Scalar ` W ) |
| 5 |
|
lmodvsubval2.s |
|- .x. = ( .s ` W ) |
| 6 |
|
lmodvsubval2.n |
|- N = ( invg ` F ) |
| 7 |
|
lmodvsubval2.u |
|- .1. = ( 1r ` F ) |
| 8 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 9 |
1 2 8 3
|
grpsubval |
|- ( ( A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
| 10 |
9
|
3adant1 |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
| 11 |
1 8 4 5 7 6
|
lmodvneg1 |
|- ( ( W e. LMod /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) |
| 12 |
11
|
3adant2 |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) |
| 13 |
12
|
oveq2d |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( N ` .1. ) .x. B ) ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
| 14 |
10 13
|
eqtr4d |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( N ` .1. ) .x. B ) ) ) |