Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvsubval2.v |
|- V = ( Base ` W ) |
2 |
|
lmodvsubval2.p |
|- .+ = ( +g ` W ) |
3 |
|
lmodvsubval2.m |
|- .- = ( -g ` W ) |
4 |
|
lmodvsubval2.f |
|- F = ( Scalar ` W ) |
5 |
|
lmodvsubval2.s |
|- .x. = ( .s ` W ) |
6 |
|
lmodvsubval2.n |
|- N = ( invg ` F ) |
7 |
|
lmodvsubval2.u |
|- .1. = ( 1r ` F ) |
8 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
9 |
1 2 8 3
|
grpsubval |
|- ( ( A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
10 |
9
|
3adant1 |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
11 |
1 8 4 5 7 6
|
lmodvneg1 |
|- ( ( W e. LMod /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) |
12 |
11
|
3adant2 |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) |
13 |
12
|
oveq2d |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( N ` .1. ) .x. B ) ) = ( A .+ ( ( invg ` W ) ` B ) ) ) |
14 |
10 13
|
eqtr4d |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( N ` .1. ) .x. B ) ) ) |