Metamath Proof Explorer


Theorem ofc2

Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses ofc2.1 φ A V
ofc2.2 φ B W
ofc2.3 φ F Fn A
ofc2.4 φ X A F X = C
Assertion ofc2 φ X A F R f A × B X = C R B

Proof

Step Hyp Ref Expression
1 ofc2.1 φ A V
2 ofc2.2 φ B W
3 ofc2.3 φ F Fn A
4 ofc2.4 φ X A F X = C
5 fnconstg B W A × B Fn A
6 2 5 syl φ A × B Fn A
7 inidm A A = A
8 fvconst2g B W X A A × B X = B
9 2 8 sylan φ X A A × B X = B
10 3 6 1 1 7 4 9 ofval φ X A F R f A × B X = C R B